首页> 外文学位 >Laser-assisted advanced assembly for MEMS fabrication.
【24h】

Laser-assisted advanced assembly for MEMS fabrication.

机译:用于MEMS制造的激光辅助高级组件。

获取原文
获取原文并翻译 | 示例

摘要

Micro Electro-Mechanical Systems (MEMS) are currently fabricated using methods originally designed for manufacturing semiconductor devices, using minimum if any assembly at all. The inherited limitations of this approach narrow the materials that can be employed and reduce the design complexity, imposing limitations on MEMS functionality. The proposed Laser-Assisted Advanced Assembly (LA3) method solves these problems by first fabricating components followed by assembly of a MEMS device. Components are micro-machined using a laser or by photolithography followed by wet/dry etching out of any material available in a thin sheet form. A wide range of materials can be utilized, including biocompatible metals, ceramics, polymers, composites, semiconductors, and materials with special properties such as memory shape alloys, thermoelectric, ferromagnetic, piezoelectric, and more. The approach proposed allows enhancing the structural and mechanical properties of the starting materials through heat treatment, tribological coatings, surface modifications, bio-functionalization, and more, a limited, even unavailable possibility with existing methods. Components are transferred to the substrate for assembly using the thermo-mechanical Selective Laser Assisted Die Transfer (tmSLADT) mechanism for microchips assembly, already demonstrated by our team. Therefore, the mechanical and electronic part of the MEMS can be fabricated using the same equipment/method. The viability of the Laser-Assisted Advanced Assembly technique for MEMS is demonstrated by fabricating magnetic switches for embedding in a conductive carbon-fiber metamaterial for use in an Electromagnetic-Responsive Mobile Cyber-Physical System (E-RMCPS), which is expected to improve the wireless communication system efficiency within a battery-powered device.
机译:目前,微机电系统(MEMS)是使用最初设计用于制造半导体器件的方法制造的,所使用的组件最少(如果有)。这种方法的固有局限性缩小了可采用的材料的范围,并降低了设计复杂性,从而对MEMS功能造成了限制。所提出的激光辅助高级组装(LA3)方法通过首先制造组件,然后组装MEMS器件来解决这些问题。使用激光或光刻法对组件进行微加工,然后通过湿法/干法蚀刻从薄板形式获得的任何材料中进行蚀刻。可以使用多种材料,包括生物相容性金属,陶瓷,聚合物,复合材料,半导体以及具有特殊性质的材料,例如记忆形状合金,热电,铁磁,压电等。所提出的方法允许通过热处理,摩擦涂层,表面改性,生物功能化等来增强起始材料的结构和机械性能,以及现有方法所具有的甚至是有限的可能性。使用我们的团队已经证明的热机械选择性激光辅助管芯转移(tmSLADT)机制将组件转移到基板上进行组装。因此,可以使用相同的设备/方法来制造MEMS的机械和电子部分。通过制造用于嵌入电磁响应移动电子物理系统(E-RMCPS)的导电碳纤维超材料中的磁性开关,证明了用于MEMS的激光辅助高级组装技术的可行性。电池供电设备中无线通信系统的效率。

著录项

  • 作者

    Atanasov, Yuriy Andreev.;

  • 作者单位

    North Dakota State University.;

  • 授予单位 North Dakota State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号