首页> 外文学位 >Applications of Thermomagnetic Convection in Thermal Management of Electronic Systems.
【24h】

Applications of Thermomagnetic Convection in Thermal Management of Electronic Systems.

机译:热磁对流在电子系统热管理中的应用。

获取原文
获取原文并翻译 | 示例

摘要

A ferrofluid is an electrically nonconductive colloidal suspension consisting of a carrier liquid and magnetic nanoparticles. The novelty of ferrofluids is that the fluid flow and properties may be controlled by an external magnetic field and thermal field. Since the discovery of the unique properties of ferrofluids, several applications for ferrofluids have been considered; the variety of applications is diverse, ranging from biomedical and technical to scientific applications.;In this thesis, the thermomagnetic convection effect of a ferrofluid in a differentially heated flow loop under the influence of an external magnetic field has been investigated analytically, numerically and experimentally. The physics of thermomagnetic convection is a highly multi-disciplinary area, which combines fluid dynamics and heat transfer with magnetism. This application utilizes ferrofluids whose magnetic properties are strongly influenced by temperature which are called temperature sensitive ferrofluids (TSFF) in this study. When a temperature sensitive ferrofluid experiences a temperature variation in the presence of an external magnetic field, the balance of the induced magnetic body force is broken and a thermomagnetic driving force is produced.;The objective of this research is to characterize the thermomagnetic circulation through a flow loop in terms of geometric length scales, ferrofluid properties, and the strength of the imposed magnetic field with the goal to provide a practical design approach for liquid cooling of electronics using of thermomagnetic effect of ferrofluids with no mechanical pump.;In the analytical study, a one-dimensional model has been developed using scaling arguments to characterize thermomagnetic circulation in a flow loop in terms of physical parameters. Accordingly, a correlation for the non-dimensional heat transfer (Nusselt number) as a function of the appropriate magnetic Rayleigh number and a correlation for the mass flow rate based on the system properties (magnetic Grashof number) were developed.;In parallel to the analytical analysis, thermomagnetic circulation flow loops were investigated numerically. The experimentally validated three-dimensional, incompressible, laminar numerical simulation models included the heat transfer process from a temperature sensitive ferrofluid contained in a closed flow loop under the influence of an external magnetic field. These models were established using COMSOL Multiphysics simulation software which in addition to solving the standard conservation equations, also solve for the magnetic field inside the simulation domain using the Maxwell equations, and include the necessary terms to take into account the magnetic body force to add to the momentum equation. Results of these numerical investigations have been used to develop semi-empirical analytical correlations. Additionally, the effect of relative positions of the heat source and the magnetic field source on system performance has been studied by considering six different cases.;The experimental measurements using a single-phase, temperature sensitive ferrofluid (TMA-250) operating under transient and steady-state laminar flow conditions in a partially heated thermomagnetic circulation flow loop under the influence of the magnetic field were used to validate the analytical and numerical studies. The cooling performance of the device with different magnetic field strengths and heating rates on the heating section were investigated. The results have revealed that flow in these devices can be controlled by the magnetic field and temperature distribution, and that the device possesses a self-regulating function corresponding to the heat source heat rate. This feature may be used as a self-regulating cooling device for thermal management of electronics without the need for a mechanical pump or sensors and an external control system.
机译:铁磁流体是由载液和磁性纳米粒子组成的非导电胶体悬浮液。铁磁流体的新颖性在于流体的流动和性质可以通过外部磁场和热场来控制。自从发现铁磁流体的独特性能以来,已经考虑了铁磁流体的几种应用。从生物医学,技术到科学应用,其应用范围是多种多样的。本文通过分析,数值和实验研究了铁磁流体在外部磁场影响下在差热流环中的热磁对流效应。 。热磁对流的物理学是一个高度多学科的领域,它将流体动力学和热传递与磁学结合在一起。该应用利用磁性能受温度强烈影响的铁磁流体,在本研究中称为温度敏感铁磁流体(TSFF)。当温度敏感的铁磁流体在存在外部磁场的情况下经历温度变化时,感应磁场力的平衡被破坏并产生热磁驱动力。在几何长度尺度,铁磁流体特性和施加的磁场强度方面实现流动循环,目的是提供一种实用的设计方法,以利用没有机械泵的铁磁流体的热磁效应为电子设备进行液体冷却。 ,已经使用比例参数开发了一维模型,以根据物理参数表征流动回路中的热磁循环。因此,根据系统性质(磁格拉斯霍夫数),开发了无量纲传热(努塞尔数)与适当磁瑞利数的函数的相关性以及与质量流量的相关性。通过分析,对热磁循环流回路进行了数值研究。经过实验验证的三维不可压缩层流数值模拟模型包括在外部磁场的影响下,密闭流回路中包含的温度敏感铁磁流体的传热过程。这些模型是使用COMSOL Multiphysics仿真软件建立的,该软件除了求解标准守恒方程外,还使用Maxwell方程求解仿真域内的磁场,并包括考虑添加到磁场力的必要项。动量方程。这些数值研究的结果已用于开发半经验分析相关性。此外,还通过考虑六种不同情况研究了热源和磁场源的相对位置对系统性能的影响。使用在瞬态和瞬态条件下工作的单相温度敏感铁磁流体(TMA-250)进行的实验测量在磁场的影响下,部分加热的热磁循环流回路中的稳态层流条件用于验证分析和数值研究。研究了在加热区不同磁场强度和加热速率下设备的冷却性能。结果表明,可以通过磁场和温度分布来控制这些设备中的流动,并且该设备具有与热源热速率相对应的自调节功能。此功能可用作电子设备的热管理的自调节冷却设备,而无需机械泵或传感器以及外部控制系统。

著录项

  • 作者

    Karimi-Moghaddam, Giti.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Mechanical.;Engineering Electronics and Electrical.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号