首页> 外文学位 >Building Sensing and Control System Blocks for Modern Vehicles
【24h】

Building Sensing and Control System Blocks for Modern Vehicles

机译:建立现代车辆的传感和控制系统块

获取原文
获取原文并翻译 | 示例

摘要

Vehicles are very important in our daily life. They are often on the move at significant speeds and are equipped with significant embedded computing systems that control and manage different functions including providing various types of assistance to its driving function. The computational capabilities of automobile systems provide opportunities and challenges to remedy various known issues caused by modern vehicles, such as environmental pollution, road congestion and fatalities.;To address these problems, we propose a system design principle that utilizes various sensing, computational and control capabilities of modern vehicles to monitor, assist or even replace in-vehicle human drivers in improving driving performance and experience with low-cost hardware and small deployment efforts. Under such design principle, the systems sense and model vehicle dynamics from vehicle parameters and third-party sensors, based on which they provide guidance and control to assist or even replace in-vehicle human drivers and achieve better driving performance and experience.;We start by deploying a smartphone application called RideSense to enhance existing approaches for whitespace determination. RideSense senses vehicle dynamics by built-in sensors and provides feedback to drivers on aggressive events to improve their driving safety awareness. Sensing vehicle dynamics by smartphone sensors require coordinate alignment between the smartphone and the car. We found that even gentle road slopes may cause severe coordinate misalignment and acceleration over/underestimation. To resolve these problems, we propose slope-aware coordinate alignment algorithm and linear acceleration estimation method to reduce alignment training time and improve linear acceleration estimation accuracy. Given the improved vehicle dynamics knowledge and the understanding of human control limitations, we then focus on extending the sensing capability to sense more comprehensive vehicle parameters and control vehicle based on well-tuned models and algorithms. We present a vehicle sensing and control system module called EcoDrive. EcoDrive models instant fuel consumption based on vehicle parameters collected from On-board diagnostics (OBD) port. According to the model, it controls the gas pedal position sensor to adjust fuel injection rate according to road segment distance and speed limit. By using careful control of fuel injection rate, it is able to improve fuel efficiency comparing to human drivers.;In the last part of the thesis, we discuss the limitations of self-driving systems and propose a remote monitoring and control system to augment self-driving systems. The intuition is that a human operator can control the vehicle remotely, when self-driving system failures occur, which may be due to bad weather, malfunction, a contradiction in sensory inputs, and other such conditions. We present a live streaming and remote control system to handle self-driving system failures, called RTDrive. RTDrive consists of a context-aware video encoding method and a live streaming protocol. The context-aware video encoding method can improve video streaming quality by adjusting encoding parameters according to vehicle dynamics. We also implement a consistent-latency view mechanism to smooth the video frames, under which the remote driver can have more precise control over the vehicle.;We believe that our driving analytics application, economic driving system, and remote control system are useful in enhancing driving performance and experience. Furthermore, such a design principle can also be applied to broader applications and systems that can assist or even replace human drivers. We also discuss how such a design principle can be utilized for our future work.
机译:车辆在我们的日常生活中非常重要。它们通常以惊人的速度移动,并配备有重要的嵌入式计算系统,该系统控制和管理不同的功能,包括为其驱动功能提供各种类型的帮助。汽车系统的计算能力为补救由现代车辆引起的各种已知问题(例如环境污染,道路拥堵和死亡等)提供了机遇和挑战。为了解决这些问题,我们提出了一种利用各种传感,计算和控制的系统设计原理借助低成本硬件和少量部署工作,现代车辆具有监控,协助甚至替代车载人类驾驶员的能力,从而提高了驾驶性能和体验。在这样的设计原则下,系统从车辆参数和第三方传感器感测和建模车辆动力学,并在此基础上提供指导和控制,以协助甚至替代车载人类驾驶员,并获得更好的驾驶性能和体验。通过部署名为RideSense的智能手机应用程序来增强现有的空白确定方法。 RideSense通过内置传感器感应车辆动态,并向驾驶员提供有关激进事件的反馈,以提高他们的驾驶安全意识。通过智能手机传感器感测车辆动态需要智能手机与汽车之间的坐标对齐。我们发现,即使平缓的道路坡度也可能导致严重的坐标未对准以及加速度过高/过低的估计。为了解决这些问题,我们提出了斜率感知坐标对准算法和线性加速度估计方法,以减少对准训练时间,提高线性加速度估计精度。鉴于不断提高的车辆动力学知识和对人为控制局限性的理解,我们接下来将重点放在扩展感测能力以感测更全面的车辆参数,并基于精心调整的模型和算法来控制车辆。我们介绍了一种称为EcoDrive的车辆传感和控制系统模块。 EcoDrive根据从车载诊断(OBD)端口收集的车辆参数对即时燃油消耗进行建模。根据该模型,它控制油门踏板位置传感器以根据路段距离和速度限制来调整燃油喷射率。通过对燃油喷射率的精心控制,与人类驾驶员相比,它可以提高燃油效率。论文的最后一部分,我们讨论了自动驾驶系统的局限性,并提出了一种远程监控系统以增强自我驾驶系统。直觉是,当自动驾驶系统发生故障时,操作员可以远程控制车辆,这可能是由于恶劣的天气,故障,感官输入矛盾以及其他此类情况引起的。我们提供了一个实时流和远程控制系统来处理自动驾驶系统故障,称为RTDrive。 RTDrive包含上下文感知的视频编码方法和实时流协议。上下文感知视频编码方法可以通过根据车辆动力学调整编码参数来提高视频流质量。我们还实现了一致的延迟视图机制来平滑视频帧,在该机制下,远程驾驶员可以对车辆进行更精确的控制。;我们相信,我们的驾驶分析应用程序,经济型驾驶系统和远程控制系统在增强驾驶性能方面很有用。驾驶性能和经验。此外,这样的设计原理还可以应用于可以辅助甚至替代人类驾驶员的更广泛的应用和系统。我们还将讨论如何将这种设计原则用于我们的未来工作。

著录项

  • 作者

    Kang, Lei.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Computer science.;Automotive engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号