首页> 外文学位 >An Analytic Solution to a Coupled System of Equations for Modeling Photoacoustic Trace Gas Sensors and a Full Waveform Inversion Approach to Microseismic Source Estimation
【24h】

An Analytic Solution to a Coupled System of Equations for Modeling Photoacoustic Trace Gas Sensors and a Full Waveform Inversion Approach to Microseismic Source Estimation

机译:用于光声痕量气体传感器建模的耦合方程组的解析解和微震源估计的全波形反演方法

获取原文
获取原文并翻译 | 示例

摘要

We discuss two different problems in applied mathematics. The first is related to the modeling of a certain class of trace gas sensors. The second is the geophysical inverse problem of estimating the source of a microseismic event.;Quartz-enhanced photoacoustic spectroscopy and resonant optothermoacoustic detection are two promising techniques used in trace gas sensing. Both methods use a quartz tuning fork and modulated laser source to detect trace gases. We discuss a coupled system of equations for the pressure, temperature, and velocity of a fluid that accounts for both thermal effects and viscous damping. We derive an analytical solution to a pressure-temperature subsystem of the Morse-Ingard equations in the special case of cylindrical symmetry. We solve for the pressure and temperature in an infinitely long cylindrical fluid domain with a source function given by a constant-width Gaussian beam that is aligned with the axis of the cylinder. In addition, we surround this cylinder with an infinitely long annular solid domain, and we couple the pressure and temperature in the fluid domain to the temperature in the solid. We show that the temperature in the solid near the fluid-solid interface can be an order of magnitude larger than that computed using a simpler model in which the temperature is governed by the heat equation. We also verify that the temperature solution of the coupled system exhibits a thermal boundary layer. These results suggest that for computational modeling of resonant optothermoacoustic detection sensors, the temperature in the fluid should be computed by solving the Morse-Ingard equations rather than the heat equation.;In the second problem, we use full waveform inversion to estimate the full spatial and temporal description of a microseismic source which includes not only the location and origin time of the source but also the waveform itself. Beginning with the simplifying assumption of two-dimensional acoustic wave propagation, we compute the gradient via the adjoint-state method for both the spatial radiation pattern and the temporal waveform of the source. This approach identifies multiple sources, handles extremely low signal-to-noise ratio data, and produces accurate results in the absence of a good initial estimate.;Encouraged by the promising results of the two dimensional acoustic case, we apply the approach to the case where wave propagation is modeled via the velocity-stress formulation of the elastic wave equation in three dimensions. A change of variables applied to the velocity-stress formulation ensures that the system is self-adjoint. Thus full waveform inversion can be effectively tailored to use this transformed velocity-stress system to estimate microseismic events with limited modifications to the forward wave solver. The inversion produces either a spatial source description in the form of a volume in which each point in the domain indicates the magnitude of stress perturbation and therefore deformation of the medium or a temporal source description which gives the time evolution of the deformation. The inversion does not require any a priori assumptions about the form of the source and does not require a good starting guess for accurate source recovery.
机译:我们讨论了应用数学中的两个不同问题。第一个与某类微量气体传感器的建模有关。第二个是估计微地震事件来源的地球物理逆问题。石英增强光声光谱和共振光热声检测是痕量气体传感中使用的两种有前途的技术。两种方法都使用石英音叉和调制激光源来检测痕量气体。我们讨论了流体的压力,温度和速度的耦合方程组,该方程组同时考虑了热效应和粘性阻尼。在圆柱对称的特殊情况下,我们导出了对Morse-Ingard方程的压力-温度子系统的解析解。我们用源函数(由与圆柱体轴对齐的恒定宽度的高斯光束给出)来求解无限长的圆柱体流体域中的压力和温度。另外,我们用无限长的环形固体区域包围该圆柱体,并将流体区域中的压力和温度耦合到固体中的温度。我们表明,在流固边界附近的固体中的温度可以比使用简单模型计算的温度大一个数量级,在该模型中,温度由热方程控制。我们还验证了耦合系统的温度解具有热边界层。这些结果表明,对于共振光热声检测传感器的计算模型,应通过求解Morse-Ingard方程而不是热方程来计算流体中的温度。在第二个问题中,我们使用全波形反演来估计整个空间微震源的时间描述,不仅包括震源的位置和起源时间,还包括波形本身。从二维声波传播的简化假设开始,我们通过伴随状态方法计算空间辐射方向图和源的时间波形的梯度。该方法可识别多个源,处理极低的信噪比数据,并在缺乏良好的初始估计的情况下产生准确的结果。;在二维声学案例的有前途的结果的鼓舞下,我们将该方法应用于案例其中通过弹性波方程的速度应力公式在三个维度上模拟了波的传播。应用于速度应力公式的变量的变化可确保系统是自伴的。因此,可以有效地定制完整的波形反演,以使用此变换后的速度应力系统来估计微震事件,并对前向波求解器进行有限的修改。反演或者产生体积形式的空间源描述,其中在域中的每个点指示应力扰动的大小,并因此指示介质的变形;或者给出时间源描述,该时间源描述给出变形的时间演化。反演不需要关于源形式的任何先验假设,也不需要良好的开始猜测就可以进行准确的源恢复。

著录项

  • 作者

    Kaderli, Jordan.;

  • 作者单位

    The University of Texas at Dallas.;

  • 授予单位 The University of Texas at Dallas.;
  • 学科 Mathematics.;Geophysics.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 119 p.
  • 总页数 119
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 康复医学;
  • 关键词

  • 入库时间 2022-08-17 11:53:11

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号