首页> 外文学位 >Intense Beam Dynamics in Arbitrary Structures
【24h】

Intense Beam Dynamics in Arbitrary Structures

机译:任意结构中的强光束动力学

获取原文
获取原文并翻译 | 示例

摘要

Particle accelerators are ubiquitous in science and society and their use is still growing globally. Beam physics, the physics underlying accelerator science, is focusing in part on studies and applications where intense charged particle beams become essential. The high-intensity may cause new collective instabilities and phenomena which are difficult to be modeled by conventional means. New numerical methods must be developed to efficiently and reliably model, simulate and optimize such high currents. The University of Maryland Electron Ring (UMER) and the Fermilab Integrable Optics Test Accelerator (IOTA) are dedicated test rings to study the high intensity regimes.;A 3-D symplectic tracking code, PHAD, was recently developed, which implements the adaptive Fast Multipole Method (FMM) in the differential algebraic (DA) framework to compute accurately and efficiently the self-induced Coulomb forces, and the beam dynamics under the combined external and internal forces. However, beam-environment interactions are missing. To add the beam-wall interactions, a new theory and numerical methods are needed. Previously, the beam-wall interactions were approximated using simplistic geometries that often gave unrealistic results.;To this end, we develop the Poisson Integral Solver with Curved Surfaces (PISCS) method and implement it in the general purpose nonlinear dynamics code COSY Infinity. PISCS uses the fast multipole accelerated boundary element method in the differential algebraic framework. PISCS efficiently represents the beam-wall interaction in arbitrary structures. We implement a strategy that can include the beam-wall interaction in other space charge tracking codes too. This work presents and benchmarks PISCS with complicated geometries and includes analyses of space charge and the beam-wall interactions using the extracted transfer maps.
机译:粒子加速器在科学和社会中无处不在,并且在全球范围内的使用仍在增长。束流物理学是加速器科学的基础物理学,部分集中在强带电粒子束变得必不可少的研究和应用中。高强度可能会导致新的集体不稳定性和现象,而这是传统方法难以建模的。必须开发新的数值方法来有效,可靠地建模,模拟和优化这种大电流。马里兰大学电子环(UMER)和费米实验室可集成光学测试加速器(IOTA)是用于研究高强度状态的专用测试环。;最近开发了一种3D辛跟踪码PHAD,它实现了自适应快速微分代数(DA)框架中的多极方法(FMM),可以准确有效地计算自感库仑力以及组合的内外力作用下的梁动力学。但是,缺少梁与环境的相互作用。为了增加梁壁相互作用,需要一种新的理论和数值方法。以前,束壁相互作用是使用简单的几何结构近似的,通常会得出不切实际的结果。为此,我们开发了带曲面的泊松积分求解器(PISCS)方法,并在通用非线性动力学代码COZY Infinity中实现了该方法。 PISCS在微分代数框架中使用快速多极加速边界元方法。 PISCS有效地表示了任意结构中的梁壁相互作用。我们实施的策略也可以将束壁相互作用包括在其他空间电荷跟踪代码中。这项工作提出了具有复杂几何形状的PISCS并对其进行了基准测试,包括使用提取的传输图分析空间电荷和束壁相互作用。

著录项

  • 作者

    Gee, Anthony Jun-Yin.;

  • 作者单位

    Northern Illinois University.;

  • 授予单位 Northern Illinois University.;
  • 学科 Computational physics.;Physics.;Applied mathematics.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 211 p.
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号