首页> 外文学位 >Solar Electric Propulsion Triple-Satellite-Aided Capture With Mars Flyby.
【24h】

Solar Electric Propulsion Triple-Satellite-Aided Capture With Mars Flyby.

机译:借助火星Flyby进行的太阳能推进三重卫星辅助捕获。

获取原文
获取原文并翻译 | 示例

摘要

Triple-Satellite-aided-capture sequences use gravity-assists at three of Jupiter's four massive Galilean moons to reduce the DeltaV required to enter into Jupiter orbit. A triple-satellite-aided capture at Callisto, Ganymede, and Io is proposed to capture a SEP spacecraft into Jupiter orbit from an interplanetary Earth-Jupiter trajectory that employs low-thrust maneuvers. The principal advantage of this method is that it combines the ISP efficiency of ion propulsion with nearly impulsive but propellant-free gravity assists.;For this thesis, two main chapters are devoted to the exploration of low-thrust triple-flyby capture trajectories. Specifically, the design and optimization of these trajectories are explored heavily. The first chapter explores the design of two solar electric propulsion (SEP), low-thrust trajectories developed using the JPL's MALTO software. The two trajectories combined represent a full Earth to Jupiter capture split into a heliocentric Earth to Jupiter Sphere of Influence (SOI) trajectory and a Joviocentric capture trajectory. The Joviocentric trajectory makes use of gravity assist flybys of Callisto, Ganymede, and Io to capture into Jupiter orbit with a period of 106.3 days.;Following this, in chapter two, three more SEP low-thrust trajectories were developed based upon those in chapter one. These trajectories, devised using the high-fidelity Mystic software, also developed by JPL, improve upon the original trajectories developed in chapter one. Here, the developed trajectories are each three separate, full Earth to Jupiter capture orbits. As in chapter one, a Mars gravity assist is used to augment the heliocentric trajectories. Gravity-assist flybys of Callisto, Ganymede, and Io or Europa are used to capture into Jupiter Orbit. With between 89.8 and 137.2-day periods, the orbits developed in chapters one and two are shorter than most Jupiter capture orbits achieved using low-thrust propulsion techniques.;Finally, chapter 3 presents an original trajectory design for a Very-Long-Baseline Interferometry (VLBI) satellite constellation. The design was created for the 8th Global Trajectory Optimization Competition (GTOC8) in which participants are tasked with creating and optimizing low-thrust trajectories to place a series of three space craft into formation to map given radio sources.
机译:三重卫星辅助捕获序列在木星的四个大型伽利略卫星中的三个卫星上使用重力辅助,以减小进入木星轨道所需的DeltaV。有人提议在木卫三和木卫三的卡里斯托进行一次三颗卫星辅助的捕获,以从采用低推力机动的行星际木星轨迹将SEP航天器捕获到木星轨道上。该方法的主要优点是将离子推进的ISP效率与几乎无脉冲但无推进剂的重力助推器相结合。本论文主要研究了两章,主要研究了低推力三重飞越捕获轨迹。具体而言,将对这些轨迹的设计和优化进行大量研究。第一章探讨了使用JPL的MALTO软件开发的两种太阳能电力推进(SEP)低推力轨迹的设计。这两个轨迹合起来代表了一个完整的地球到木星的捕获,分为一个日心地球到木星的影响范围(SOI)轨迹和一个以木星为中心的捕获轨迹。 Joviocentric轨迹利用Callisto,Ganymede和Io的重力辅助飞越以106.3天的时间捕获到木星轨道中;在此之后,在第二章中,根据本章的内容又开发了三种SEP低推力轨迹一。这些轨迹是使用同样由JPL开发的高保真度Mystic软件设计的,对第一章中开发的原始轨迹进​​行了改进。在这里,已发展的轨迹分别是三个独立的,从地球到木星的完整捕获轨道。如第一章所述,使用火星重力辅助来增加日心中心轨迹。卡里斯托,木卫三和艾欧或欧罗巴的重力辅助飞越被捕获到木星轨道中。第一章和第二章中的轨道周期为89.8天至137.2天,比使用低推力推进技术获得的大多数木星捕获轨道要短。最后,第三章介绍了超长基线干涉测量的原始轨迹设计。 (VLBI)卫星星座。该设计是为第八届全球航迹优化竞赛(GTOC8)设计的,参赛者的任务是创建和优化低推力航迹,以将一系列三个航天器编入编队以绘制给定的无线电源。

著录项

  • 作者

    Patrick, Sean.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Aerospace engineering.
  • 学位 M.S.
  • 年度 2015
  • 页码 77 p.
  • 总页数 77
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:02

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号