首页> 外文学位 >The Speciation, Kinetics, and Adsorption of Tungsten in Sulfidic Natural Waters: From Paleo-Environment to Nanotechnology
【24h】

The Speciation, Kinetics, and Adsorption of Tungsten in Sulfidic Natural Waters: From Paleo-Environment to Nanotechnology

机译:硫化自然水中钨的形态,动力学和吸附:从古环境到纳米技术

获取原文
获取原文并翻译 | 示例

摘要

Redox-sensitive trace metals tend to be more soluble under oxidizing conditions and less soluble under reducing conditions resulting in authigenic enrichments in oxygen-depleted sedimentary facies (Algeo and Rowe, 2012; P Ho et al., 2017; Tribovillard et al., 2006). Because of that, redox sensitive trace elements are used as paleoredox proxies to reconstruct redox status of the environment (Tribovillard et al., 2006). Unfortunately, we lack the quantitative understanding of many of these trace elements. One of the most important trace elements is tungsten. To contribute a better understanding of the biogeochemistry of tungsten to our community, I utilize laboratory experiments, geochemical modeling, and statistical methods to investigate the speciation, kinetics, and adsorption of tungsten in the environment. This thesis includes three major chapters. In the first major chapter, I performed a series of chemical experiments to explore the particle reactivity of tungstate and tetrathiotungstate in sulfidic solutions. I found that pyrite is a strong scavenger of W in aquatic environments. Our results indicate that the difference of specific adsorption between WO42-- and WS 42-- may be attributed to their different inner-sphere complexation on the pyrite surface. Our results also show that WS4 2-- is less particle reactive with respect to pyrite than MoS 42--. In the second major chapter, I examined effect of acid on tungsten (W) sulfidation process as well as developed the Bronsted acid relationship, which provides a tool to predict the effect of acids on the kinetics of the thiolation reaction of W in natural waters. The results of laboratory experiments show that thiotungstate formation is first order with respect to both H2S and WO42- concentrations, and is catalyzed by acids. Therefore, low pH and high H2S concentrations both favor W thiolation. However, compared to molybdenum (Mo), thiolation of W is kinetically "sluggish". The modeling results show that full thiolation of Mo requires ca. 110 days, whereas full thiolation of W requires ca. 50 years under a persistent euxinic condition such as the Black Sea. Our results indicate that the longer the period of euxinia, the higher chance of WS42- species in solutions and subsequently be incorporated into euxinic sediments as W-S species. In the last chapter, I successfully tested whether protonated mineral surfaces also catalyze the hydrolysis of tetrathiotungstate anions. Our results show that kaolin (Al 2Si2O5[OH]4), aluminum oxide (gamma-Al 2O3), and titanium dioxide (TiO2) exert an appreciable catalytic effect on tetrathiotungstate hydrolysis. The data suggest that the pH dependent hydrolysis rate of WS42- for kaolin, gamma-Al 2O3, and TiO2 fall into two distinct groups, which consist two reaction pathways. The pH dependence of the mineral-catalyzed reactions suggest that acid surface sites on the mineral surfaces promote WS42- hydrolysis reactions. In the presence of UV-light, TiO2 substantially enhanced the hydrolysis rate of WS4 2- compared to identical experiments that were conducted in the absence of UV-light, we suggest the increased hydrolysis rate of WS4 2- in the presence of UV-light reflects the production of reactive oxygen species by TiO2. Due to the rapid development of nanotechnology, more engineered nanomaterials like TiO2 are introduced into the environment, which can impact the speciation and mobility of trace elements. Combined, the results in this thesis advance our understanding of mechanisms for W biogeochemistry in euxinic systems and will allow to facilitate reconstruction of paleodepositional conditions, paleoproductivity, and paleoredox.
机译:氧化还原敏感的痕量金属在氧化条件下往往更易溶,而在还原条件下则较难溶,从而导致贫氧沉积相的自生富集(Algeo和Rowe,2012; P Ho等人,2017; Tribovillard等人,2006) )。因此,氧化还原敏感的痕量元素被用作古氧化还原代表物,以重建环境的氧化还原状态(Tribovillard等,2006)。不幸的是,我们缺乏对许多微量元素的定量了解。钨是最重要的微量元素之一。为了对我们社区更好地了解钨的生物地球化学,我利用实验室实验,地球化学模型和统计方法来研究环境中钨的形态,动力学和吸附。本文共分三章。在第一章中,我进行了一系列化学实验,探索了硫化溶液中钨酸盐和四硫钨酸盐的颗粒反应性。我发现黄铁矿是水生环境中W的强清除剂。我们的结果表明,WO42--和WS 42--之间比吸附的差异可能归因于它们在黄铁矿表面上不同的内球络合。我们的结果还表明,WS4 2--对黄铁矿的颗粒反应性低于MoS 42-。在第二章中,我研究了酸对钨(W)硫化过程的影响,并建立了布朗斯台德酸关系,该关系提供了预测酸对自然水中W硫醇化反应动力学的影响的工具。实验室实验的结果表明,相对于H2S和WO42-浓度,硫钨酸盐的形成是一级的,并且是由酸催化的。因此,低pH和高H2S浓度均有利于W硫醇化。但是,与钼(Mo)相比,W的硫醇化反应在动力学上“缓慢”。建模结果表明,Mo的完全硫醇化需要大约。 110天,而W的完全硫醇化大约需要在持续的好氧条件下(如黑海)长达50年。我们的研究结果表明,富余时间越长,溶液中WS42-物种的机会就越高,随后其作为W-S物种并入到富营养性沉积物中。在上一章中,我成功地测试了质子化的矿物表面是否还催化四硫钨酸根阴离子的水解。我们的结果表明,高岭土(Al 2Si2O5 [OH] 4),氧化铝(γ-Al2O3)和二氧化钛(TiO2)对四硫钨酸水解具有明显的催化作用。数据表明,WS42-对高岭土,γ-Al2O3和TiO2的pH依赖性水解速率分为两个不同的组,这两个组包括两个反应路径。矿物催化反应的pH依赖性表明,矿物表面的酸性表面位点会促进WS42水解反应。与在不存在紫外线的情况下进行的相同实验相比,在存在紫外线的情况下,TiO2大大提高了WS4 2-的水解速率,我们建议在存在紫外线的情况下WS4 2-的水解速率增加反映了TiO2产生的活性氧种类。由于纳米技术的飞速发展,更多的工程化纳米材料(如TiO2)被引入到环境中,这可能会影响痕量元素的形态和迁移率。结合起来,本论文中的结果使我们对含氧植物中W生物地球化学的机理有了更深入的了解,并将有助于促进古沉积条件,古生产力和古氧化还原的重建。

著录项

  • 作者

    Cui, Minming.;

  • 作者单位

    Tulane University School of Science and Engineering.;

  • 授予单位 Tulane University School of Science and Engineering.;
  • 学科 Geochemistry.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

  • 入库时间 2022-08-17 11:53:01

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号