首页> 外文学位 >Relationship between chemistry, surface properties, and hepatocyte spheroid culture performance of charged elastin-like polypeptide coatings.
【24h】

Relationship between chemistry, surface properties, and hepatocyte spheroid culture performance of charged elastin-like polypeptide coatings.

机译:化学,表面性质和带电弹性蛋白样多肽涂层的肝细胞球体培养性能之间的关系。

获取原文
获取原文并翻译 | 示例

摘要

Emerging biomedical applications poised to benefit from improved in vitro hepatic culture include: 1) in vitro spheroid culture models that accurately reflect in vivo liver functionality to help researchers screen drugs and study hepatic diseases; 2) development of a large-scale robust, differentiated hepatic culture system for use as a "liver bioreactor" to periodically mediate toxicity in the blood of liver patients (liver "dialysis"); and 3) in vitro growth of effective autologous 3D differentiated hepatic tissue constructs for therapeutic implantation within end stage liver disease patients.;To directly advance these technologies we addressed improvement of the in vitro hepatic culture surface itself. We engineered surfaces inducing long-term differentiated hepatic function that can be easily adjusted to achieve a range of desired culture morphologies.;The default morphology assumed in current liver cell culture models typically features a hepatocyte monolayer immersed in static or flowing media. In vitro conditions that encourage hepatocytes to aggregate and assume a spheroidal morphology, however, render highly differentiated liver cells with metabolism more closely reflecting that of in vivo hepatocytes. Furthermore, spheroidal cells have been shown to remain viable over relatively long culture periods (> 3 weeks) compared to cells of a monolayer. Unfortunately, currently available spheroid-inducing surfaces offer limited cytocompatibility and allow for easy surface detachment of anchorage-dependent spheroidal hepatocytes, rendering cultures of limited surface cell density and hepatic functionality. We sought to engineer surfaces to mitigate these issues, building on recent success developing, thoroughly characterizing, and testing a spheroid-inducing coating material based on elastin-like-polypeptides conjugated with polyethyleneimine (PEI).;To this end, ELP was expressed by culturing E. coli bacteria genetically modified to translate the ELP polypeptide sequence [VPGVG] 40. ELP was then chemically modified with primary amines conjugates. In the "Direct Reaction Scheme", ELP molecules were directly conjugated to polyethylenimine, polyarginine, or polylysine, while in the "PVDMA Reaction Scheme", ELP was conjugated to a poly(2-vinyl-4,4-dimethyl aziactone) (PVDMA) linker molecule and subsequently reacted to N-Boc-1,4-butanediamine, N-Boc ethylenediamine, or L-arginine molecules to render Charged-ELP conjugates. Chemical composition and molecular weights of synthesized ChargedELPs were assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDSPAGE), Fourier transform infrared (FTIR) spectroscopy, and matrix-assisted laser desorption/ionization time of flight (MALDI TOF) spectroscopy. O-phthalaldehyde (OPA) fluorescence measures of the products proved an effective method to assess and control the relative primary amine "spheroid-inducing content" for all six materials. Selected OPA-based mixture ratios of pure ELP and Charged-ELP called "charge grades" were coated on tissue culture polystyrene (TCPS) surfaces for analysis of surface properties. Contact angle goniometry was used to develop Zisman plots that revealed no statistically significant relationship between the coating material's primary amine content and its surface free energy. Atomic force micrographs of dry coating surfaces revealed intricate patterns that formed as coatings deposited, though no definite trend in patterning was noted with change in conjugate type or primary amine content of material. Coating surfaces were shown to rearrange following immersion in culture media under culture conditions and ultimately reverted to a flat, featureless surface within a week under culture conditions. X-ray photoelectron spectroscopy (XPS) showed spatial variation in surface chemistry atop all coating surfaces. We next cultured primary rat hepatocytes atop 2 control surfaces and 22 total test coatings comprised of six Charged-ELP material groups and four main charge grades. Cell viability, differentiation, and quantifiable liver-specific metabolism over a 20 day culture period were assessed through optical microscopy and through measurement of total protein, rat albumin, and urea. By day 14 protein-normalized rat albumin production was maximum at the lowest charge grade atop each material except for ELP-polylysine coatings. Total albumin production on day 20 was higher atop coatings charged with lysine-like terminal groups (664 +/- 50 ng albumin/culture well/day atop ELP-polylysine grade 3.4 and 580 +/- 43 ng albumin/culture well/day atop ELP-PVDMA-butanediamine grade 1.1) than those charged with synthetic imine or using one of two reaction schemes to render six different spheroid-inducing "Charged-ELP" arginine-like terminal groups (411 +/- 111 ng albumin/culture well/day atop ELP-PEI grade 1.1, 304 +/- 65 ng albumin/culture well/day atop ELP-PVDMA-ethylenediamine grade 1.7, and less than 100 ng albumin/culture well/day atop ELP-polyarginine or ELP-PVDMA-arginine). In summary, we have developed an array of coating materials that are highly biocompatible (support long term culture), have tailorable spheroid-forming capacity to accommodate desired cell morphologies, are able to be quickly coated atop traditional culture surfaces, and maintains structural integrity while ensuring tight adherence of spheroids over long culture periods.
机译:有望从改进的体外肝细胞培养中受益的新兴生物医学应用包括:1)能够准确反映体内肝脏功能以帮助研究人员筛选药物和研究肝病的体外球体培养模型; 2)开发大规模健壮,分化的肝培养系统,用作“肝脏生物反应器”,以定期介导肝脏患者血液中的毒性(肝脏“透析”); 3)有效的自体3D分化肝组织构建体的体外生长,用于在末期肝病患者中进行治疗性植入。为了直接推进这些技术,我们着手改进体外肝培养表面本身。我们设计了能够诱导长期分化的肝功能的表面,可以很容易地对其进行调节,以实现一系列所需的培养形态。当前肝细胞培养模型中假定的默认形态通常具有浸没在静态或流动介质中的肝细胞单层。然而,鼓励肝细胞聚集并呈现球形形态的体外条件使高度分化的肝细胞的代谢更紧密地反映了体内肝细胞的代谢。此外,与单层细胞相比,球状细胞已显示在相对较长的培养时间(> 3周)内保持活力。不幸的是,当前可用的诱导球体的表面提供有限的细胞相容性,并允许锚定依赖性球状肝细胞容易地表面分离,从而使培养物的表面细胞密度和肝功能受到限制。我们基于最近成功开发,彻底表征和测试基于与聚乙烯亚胺(PEI)缀合的弹性蛋白样多肽的诱导类球体的涂层材料,试图对表面进行工程处理以减轻这些问题。为此,ELP表达为培养经基因修饰可翻译ELP多肽序列[VPGVG]的大肠杆菌40。然后用伯胺偶联物对ELP进行化学修饰。在“直接反应方案”中,ELP分子直接与聚乙烯亚胺,聚精氨酸或聚赖氨酸共轭,而在“ PVDMA反应方案”中,ELP与聚(2-乙烯基-4,4-二甲基叠氮内酯)(PVDMA)共轭。分子),然后与N-Boc-1,4-丁二胺,N-Boc乙二胺或L-精氨酸分子反应以生成带电荷的ELP共轭物。使用十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDSPAGE),傅立叶变换红外(FTIR)光谱和基质辅助激光解吸/电离飞行时间(MALDI TOF)光谱评估合成的ChargedELP的化学组成和分子量。产品的邻苯二甲醛(OPA)荧光测量证明是评估和控制所有六种材料的相对伯胺“诱导球状体含量”的有效方法。在组织培养聚苯乙烯(TCPS)表面上涂覆选定的基于OPA的纯ELP和带电ELP混合比(称为“装料等级”),以分析表面性能。接触角测角法用于绘制Zisman图,该图显示涂料的伯胺含量与其表面自由能之间没有统计学上的显着关系。干燥涂层表面的原子力显微镜照片揭示了随着涂层沉积而形成的复杂图案,尽管随着共轭物类型或材料伯胺含量的变化,没有发现明显的图案化趋势。结果表明,在培养条件下浸入培养基后,涂层表面会重新排列,并在培养条件下一周内最终恢复为平坦,无特征的表面。 X射线光电子能谱(XPS)显示了所有涂层表面上表面化学的空间变化。接下来,我们在2个对照表面和22个总测试涂层(包括6个Charged-ELP材料组和4个主要电荷等级)上培养原代大鼠肝细胞。通过光学显微镜并通过测量总蛋白,大鼠白蛋白和尿素来评估20天培养期间的细胞活力,分化和可量化的肝脏特异性代谢。到第14天,除ELP-聚赖氨酸涂层外,每种材料顶部的电荷最低,蛋白质标准化的大鼠白蛋白产量最高。在第20天,总白蛋白产量高于带有赖氨酸样末端基团的涂层(664 +/- 50 ng白蛋白/培养孔/天,ELP-多聚赖氨酸等级3.4和580 +/- 43 ng白蛋白/培养孔/天,顶) ELP-PVDMA-丁二胺1.1级),而不是使用合成亚胺或使用两种反应方案之一来产生六个不同的球体诱导型“带电ELP”精氨酸样末端基团(411 +/- 111 ng白蛋白/培养孔/ ELP-PEI 1.1级以上的天,304 +/- 65 ng白蛋白/培养皿/ ELP-PVDMA-乙二胺1.7级以上的天,并且在ELP-聚精氨酸或ELP-PVDMA-精氨酸顶上/每天少于100 ng白蛋白)。总而言之,我们开发了一系列具有高度生物相容性(支持长期培养),具有可定制的球体形成能力以适应所需细胞形态的涂层材料,能够在传统培养物表面上快速涂层,并在保持结构完整性的同时确保长期培养过程中球体紧密附着。

著录项

  • 作者

    Weeks, C. Andrew.;

  • 作者单位

    The University of Mississippi Medical Center.;

  • 授予单位 The University of Mississippi Medical Center.;
  • 学科 Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号