首页> 外文学位 >Memristor-based ternary content addressable memory for data-intensive applications.
【24h】

Memristor-based ternary content addressable memory for data-intensive applications.

机译:基于忆阻器的三元内容可寻址存储器,用于数据密集型应用程序。

获取原文
获取原文并翻译 | 示例

摘要

Data-intensive storage and computing systems call for continuing advancements both in data latency and energy efficiency. However, the major benefits from CMOS technologies, such as high packing density and processing speed, are getting desensitized primarily due to the prohibitively increasing power density. In order for the next-generation storage and computing systems to be capable of high performance data-intensive applications, it is necessary to continue innovations in creating new circuits and system architectures, together with searching for new materials and devices.;The memristor, short for memory resistor, is a two-terminal passive device whose resistance is controlled by external electrical signals and exhibits non-volatile memory function. Due to its capabilities of non-volatile resistive memories, nanoscale miniaturization in an ultra-high packing density, and intriguing nonlinear dynamics, the memristor is being widely investigated to create new advanced circuit functions and to complement CMOS systems. The memristor technologies will lead current CMOS-based storage and computing systems to the data-intensive electronic systems, with significantly reduced stand-by power, form factor and manufacturing cost. Developing compact models for the memristor is essential to facilitate circuit analyses and designs with memristors. While the previously reported memristor models exhibit limitations in the model stability, versatility and adaptability, we propose a new module-based memristor model that covers a wide range of device behaviors. Coincident to the theoretic memristor behaviors, the proposed model uniquely reveals that an effective charge-flux constitutive relationship can always be obtained from various types of memristors. The stability of the proposed model is also significantly enhanced by adapting the new charge (or flux)-based window function.;Associative lookup functions with high throughputs are widely implemented in Ternary Content Addressable Memories (TCAMs). The TCAM holds the potential to curb the latency and power requirements of data-intensive systems. However existing TCAMs that commonly utilize Static Random Access Memories (SRAMs) as the storage units exhibit low storage capacity/density and high cost-per-bit due to bit cells with large areas. We propose a memristor-based ternary content addressable memory (mTCAM) for data-intensive applications. A novel bit cell structure is presented that not only minimizes the bit cell area but also is capable of performance optimizations on the latency and energy consumption. Detailed design issues such as voltage compliance to ensure correct write/search operations, parameter-dependent sensing margins and device variations are also discussed. Circuit level simulations have demonstrated functionalities of the mTCAM. Performance evaluation has shown that mTCAM achieves impressive storage density, search latency and energy consumption. The proposed mTCAM is an attractive candidate in building future computing systems for data-intensive applications.
机译:数据密集型存储和计算系统要求在数据延迟和能效方面不断发展。但是,CMOS技术的主要优点(如高封装密度和处理速度)主要由于功率密度的过高增加而变得不敏感。为了使下一代存储和计算系统能够用于高性能的数据密集型应用,有必要在创建新电路和系统架构以及寻找新材料和器件的同时继续进行创新。用于存储电阻器的是一种两端无源器件,其电阻由外部电信号控制,并具有非易失性存储功能。由于其具有非易失性电阻存储器的功能,超高封装密度的纳米级微型化以及令人着迷的非线性动力学,人们正在广泛研究忆阻器,以创建新的高级电路功能并补充CMOS系统。忆阻器技术将把当前基于CMOS的存储和计算系统引向数据密集型电子系统,从而大大降低了待机功耗,外形尺寸和制造成本。为忆阻器开发紧凑模型对于促进忆阻器的电路分析和设计至关重要。尽管先前报道的忆阻器模型在模型的稳定性,多功能性和适应性方面都存在局限性,但我们提出了一种基于模块的忆阻器模型,该模型涵盖了广泛的器件行为。与理论忆阻器行为相吻合,所提出的模型独特地揭示了总能从各种类型的忆阻器中获得有效的电荷-通量本构关系。通过适应新的基于电荷(或通量)的窗口函数,还大大提高了所提出模型的稳定性。三元内容可寻址存储器(TCAM)中广泛实现了具有高吞吐量的关联查找功能。 TCAM具有抑制数据密集型系统的延迟和功耗要求的潜力。然而,由于比特单元具有大面积,因此通常利用静态随机存取存储器(SRAM)作为存储单元的现有TCAM表现出低存储容量/密度和高每位成本。我们为数据密集型应用提出了基于忆阻器的三态内容可寻址存储器(mTCAM)。提出了一种新颖的位单元结构,其不仅使位单元面积最小化,而且还能够在等待时间和能量消耗方面进行性能优化。还讨论了详细的设计问题,例如电压一致性以确保正确的写入/搜索操作,与参数有关的感测裕度和器件变化。电路级仿真已证明了mTCAM的功能。性能评估表明,mTCAM实现了令人印象深刻的存储密度,搜索延迟和能耗。拟议的mTCAM是为数据密集型应用构建未来计算系统的诱人候选人。

著录项

  • 作者

    Zheng, Le.;

  • 作者单位

    University of California, Santa Cruz.;

  • 授予单位 University of California, Santa Cruz.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号