首页> 外文学位 >Methods to characterize and enhance the through-thickness thermal conductivity of three dimensional polymer composites.
【24h】

Methods to characterize and enhance the through-thickness thermal conductivity of three dimensional polymer composites.

机译:表征和增强三维聚合物复合材料的全厚度导热性的方法。

获取原文
获取原文并翻译 | 示例

摘要

Increased polymer composites are being used to replace traditional materials in modern structures and industrial applications due to their light weight and corrosion resistant features. However some of these devices and components are subjected to increasing thermal load and as polymer composites are poor conductors of heat, thermal management is critical. Thermal transport mechanisms are investigated and characterized when highly conductive fibers are embedded in three-dimensional polymer composites. Improved out-of-plane thermal conductivity of fiber reinforced polymer (FRP) composite materials will enable lightweight structures to integrate efficient thermal management.;Different approaches have been explored to enhance out-of-plane thermal conductivity and address measurement issues associated with this class of composites, including Z-pin insertion and distribution, particle-fabric reinforcement and laminate stacking sequence design and some combinations of above factors. An approach in which a conductive coating is applied on the surface of composite samples to improve the through-thickness thermal conductivity of composites containing a small percentage of conductive fibers in the thickness direction is explored. A parametric study revealed that the thickness of the coating and the distribution of the conductive fibers play a crucial role in augmenting the heat transfer across the thickness of the polymer composite. For the enhancement of through-thickness thermal conductivity of nonwoven laminated composites, one can introduce conductive fibers and modify the form, direction and architecture of the fiber network. The role of the fiber tow orientation, volume fraction and stacking sequence is explored. A geometric scalar parameter is proposed to correlate laminate through-thickness thermal conductivity with fiber tow stacking sequence. For woven structures, it is found that Pilling's constitutive model for two phase system agrees well with the numerical predictions of the through-thickness thermal conductivity. The randomly distributed conductive particles can be loaded into the matrix to make a difference to the effective thermal conductivity of this three-phase system. A unified hybrid constitutive model is proposed for the through-thickness thermal conductivity prediction for the particle embedded woven fabric system, incorporating a combination of generalized rule of mixtures and Pilling model to address a wide range of particle volumes and particle and fiber thermal conductivities.;For characterization of composite materials with heterogeneous surfaces, an experimental setup was designed, fabricated and validated to measure through-thickness thermal conductivity. A corresponding finite element model of the setup was developed to characterize and gain further understanding of the thermal field in the measurement cell. It is found that the temperature variation over the inhomogeneous surfaces cannot be captured by limited number of thermistors in the setup. To be able to record the temperature gradient over the entire surface, an approach combining an infrared camera temperature measurement system with a finite element analysis is developed to investigate the influence of natural convection on the effective thermal conductivity of such heterogeneous materials. Measurements of reference samples were conducted to validate the methodology. The conductive coating application in this scenario is also quantified for heat transfer enhancement. In summary, this dissertation developed various through-thickness thermal conductivity enhancement models for matrix, nonwoven laminate and woven structures and proposed an improved characterization technique with infrared thermography for heterogeneous materials.
机译:越来越多的聚合物复合材料由于其轻巧和耐腐蚀的特性,正被用于现代结构和工业应用中的传统材料的替代。但是,这些设备和组件中的某些组件承受的热负荷不断增加,并且由于聚合物复合材料是不良的热导体,因此热管理至关重要。当高导电性纤维嵌入三维聚合物复合材料中时,将研究和表征热传输机理。纤维增强聚合物(FRP)复合材料改善的平面外导热系数将使轻质结构集成有效的热管理。;已探索出各种方法来增强平面外导热系数并解决与此类相关的测量问题复合材料的设计,包括Z销的插入和分布,颗粒织物的增强以及层压板的堆叠顺序设计以及上述因素的一些组合。探索了一种方法,该方法是在复合材料样品的表面上涂覆导电涂层,以提高在厚度方向上包含少量导电纤维的复合材料的全厚度热导率。一项参数研究表明,涂层的厚度和导电纤维的分布在增加聚合物复合材料整个厚度的传热方面起着至关重要的作用。为了提高非织造层压复合材料的全厚度导热性,可以引入导电纤维并改变纤维网络的形式,方向和结构。探讨了纤维束取向,体积分数和堆积顺序的作用。提出了几何标量参数,以将层压材料的全厚度热导率与纤维束堆叠顺序相关联。对于机织结构,发现皮林两相系统的本构模型与全厚度导热系数的数值预测非常吻合。可以将无规分布的导电颗粒加载到基质中,以改变该三相系统的有效导热率。提出了一个统一的混合本构模型,用于颗粒嵌入机织物系统的全厚度热导率预测,结合了混合物的一般化规则和起球模型的组合,以解决广泛的颗粒体积以及颗粒和纤维的热导率问题。为了表征具有异质表面的复合材料,设计,制造并验证了实验装置,以测量全厚度热导率。开发了相应的装置有限元模型,以表征和进一步了解测量单元中的热场。发现在不均匀表面上的温度变化不能通过设置中有限数量的热敏电阻来捕获。为了能够记录整个表面的温度梯度,开发了一种将红外热像仪温度测量系统与有限元分析相结合的方法,以研究自然对流对此类异质材料有效导热率的影响。进行参考样品的测量以验证该方法。在这种情况下,导电涂料的应用也被量化以增强传热。综上所述,本文针对基质,非织造层压材料和机织结构开发了各种厚度增厚的导热系数模型,并提出了一种改进的红外热成像表征技术。

著录项

  • 作者

    Yu, Hang.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:45

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号