首页> 外文学位 >Optimization of Solid Sorbent CO2 Capture and Water Usage Reduction in Advanced Power Generation.
【24h】

Optimization of Solid Sorbent CO2 Capture and Water Usage Reduction in Advanced Power Generation.

机译:优化高级发电中固体吸收剂CO2的捕集和减少用水量。

获取原文
获取原文并翻译 | 示例

摘要

Greenhouse gas emissions and water usage are two major concerns in the power generation sector. Advanced clean coal technologies (i.e., solid sorbent CO2 capture technologies and combined wet/dry cooling system) are promising for future central power generation in order to achieve sustainable, secure, and efficient system performance. This dissertation describes research associated with advanced coal derived clean power generation, from near-term pulverized coal (PC) power plant strategies retrofitted for CO 2 capture, to long-term integrated gasification combined cycle (IGCC) power generation, to co-production IGCC with carbon capture and storage (CCS) co-fueled by coal and biomass.;In this study, the post-combustion solid sorbent based CO2 capture system for the PC power plant is optimized for integration in order to minimize plant modifications and the associated downtime. Due to significantly less steam usage in sorbent regeneration, the PC plant with advanced solid sorbent CO2 capture has better performance and lower cost of electricity than the plant using conventional amine scrubbing technology. By employing a combined wet/dry cooling system, the PC plant with CO2 capture reduces water usage significantly, while the performance and water usage are a function of ambient conditions as predicted by a mathematical model, the latter of which is validated by experimental data from the literature.;Pre-combustion solid sorbent based CO2 capture technologies used in the IGCC are evaluated by systems analysis and compared to Selexol TM CO2 capture. Compared with the SelexolTM approach, solid sorbent CO2 capture results in a power plant with significantly higher overall plant efficiency and more attractive economics.;Computational fluid dynamics (CFD) simulation models were developed for both solid sorbent CO2 capture alone, and combined water gas shift (WGS) and solid sorbent CO2 capture in the IGCC applications. ANSYS FLUENT and User Defined Functions (UDF) were the resources adopted to incorporate the fluid mechanics, heat and mass transfer, water vaporization, adsorption equilibrium and kinetics, and WGS reaction kinetics . The CFD models were validated by experimental data, and applied to commercial size fixed bed reactor designs and simulations. It was found that (1) the CO2 breakthrough time or CO2 loading capacity is independent of reactor geometry as long as the space velocity is constant, (2) the adsorption rate is the rate controlling step for CO2 capture using solid sorbent, and (3) break through occurs before the solid sorbent near the exit of the bed is fully utilized due to bulk transfer of the CO2 in the axial direction. However, a low space velocity can increase the loading of the sorbent. The CFD approach also assists in the design of effective thermal management strategies for the reactor in the case of combined WGS and solid sorbent CO 2 capture.;Co-feeding of biomass along with coal and the co-production of H 2 and synthetic fuels in IGCCs is evaluated for future clean coal power generation. It was determined by systems analyses that co-feeding and co-production IGCCs are preferable for renewable energy utilization and energy security, with the co-products being produced at competitive costs.
机译:温室气体排放和用水是发电行业中的两个主要问题。先进的清洁煤技术(即,固体吸附剂CO2捕集技术和干/湿联合冷却系统)有望在未来的中央发电中实现可持续,安全和高效的系统性能。本文介绍了与先进的煤炭清洁发电相关的研究,从为粉煤CO 2捕集改造的近期粉煤(PC)电厂策略到长期整体气化联合循环(IGCC)发电再到联合生产IGCC ;在这项研究中,针对PC电厂的燃烧后基于固体吸附剂的CO2捕集系统进行了优化,以进行集成,从而最大程度地减少工厂改造和相关的停机时间。由于吸附剂再生中蒸汽的使用量大大减少,因此与采用传统胺洗涤技术的工厂相比,具有先进的固体吸附剂CO2捕集的PC设备具有更好的性能和更低的电力成本。通过采用干湿组合冷却系统,具有二氧化碳捕集功能的PC装置可显着减少用水量,而性能和用水量则是数学模型预测的环境条件的函数,而数学模型可通过以下实验数据验证通过系统分析评估了IGCC中使用的基于燃烧前固体吸附剂的CO2捕集技术,并将其与Selexol TM CO2捕集进行了比较。与SelexolTM方法相比,固体吸附剂CO2捕集导致发电厂的整体电厂效率显着提高,并且更具经济吸引力;开发了分别针对固体吸附剂CO2捕集和联合水煤气变换的计算流体动力学(CFD)模拟模型(WGS)和IGCC应用中的固体吸附剂CO2捕集。 ANSYS FLUENT和用户定义函数(UDF)是用于整合流体力学,传热和传质,水汽化,吸附平衡和动力学以及WGS反应动力学的资源。通过实验数据验证了CFD模型,并将其应用于商业规模的固定床反应器设计和仿真。发现(1)只要空速恒定,CO2的穿透时间或CO2的负载能力就与反应器的几何形状无关;(2)吸附速率是使用固体吸附剂捕获CO2的速率控制步骤;(3)由于CO2沿轴向方向大量转移,因此在床出口附近的固体吸附剂被充分利用之前会发生突破。但是,低空速会增加吸附剂的负载。 CFD方法还有助于在WGS和固体吸附剂CO 2结合捕集的情况下为反应器设计有效的热管理策略。生物质与煤一起进料,以及H 2和合成燃料的联产对IGCC进行了评估,以用于未来的清洁煤发电。通过系统分析确定,共同进料和共同生产的IGCC对于可再生能源利用和能源安全是更可取的,而共同生产的副产品则具有竞争力的成本。

著录项

  • 作者

    Chen, Qin.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Energy.;Engineering.;Environmental engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 337 p.
  • 总页数 337
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:28

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号