首页> 外文学位 >Design of nonvolatile on-chip memory using spin torque devices.
【24h】

Design of nonvolatile on-chip memory using spin torque devices.

机译:使用自旋转矩器件的非易失性片上存储器设计。

获取原文
获取原文并翻译 | 示例

摘要

The demand for fast, large-capacity, energy-efficient, and cost-effective memory in computing systems has led to intense research and development effort to find a memory technology that can present all the desired attributes of today's memories: speed of Static Random Access Memory (SRAM), density of Dynamic RAM (DRAM), and non-volatility of Flash. Spin-Transfer Torque Magnetic RAM (STT-MRAM) has emerged as the leading candidate due to its non-volatility, superior scalability, and good compatibility with CMOS fabrication process. However, high write-current requirement in standard 1 Transistor -1 MTJ (1T1R) STT-MRAM presents a key challenge toward the achievement of low write-power, high integration density, and unlimited write endurance. Moreover, the shared read and write path severely limits the memory design space.;The focus of this research is two-fold: 1) Investigation of the design issues in current MRAM technology and proposals of device- and circuit-level design solutions. First, we analyze asymmetric write currents in standard 1T-1R STT-MRAMs, and identify a potential for write power reduction. To that effect, we propose low-power circuit design techniques to balance out the asymmetric write currents and optimize the memory design from both write-power and reliability aspects. Next, we propose a novel MRAM device structure that exploits spin Hall effect (SHE) to create a differential memory cell for fast and energy-efficient memory applications. Then, we present new multi-level-cell design concepts for spin-orbit torque (SOT) MRAM to improve the integration density. 2) Investigation of spin-devices to implement specialized on-chip hardware, namely true random number generator, suitable for security and cryptography applications.
机译:对计算系统中快速,大容量,节能和具有成本效益的内存的需求已导致人们进行了大量的研究和开发工作,以寻找一种能够提供当今内存的所有所需属性的内存技术:静态随机访问的速度内存(SRAM),动态RAM(DRAM)的密度以及闪存的非易失性。自旋转扭矩磁性RAM(STT-MRAM)由于其不易挥发,卓越的可扩展性以及与CMOS制造工艺的良好兼容性而成为领先的候选产品。但是,标准1晶体管-1 MTJ(1T1R)STT-MRAM对写入电流的要求很高,这对实现低写入功率,高集成度和无限的写入耐久性提出了重大挑战。此外,共享的读写路径严重限制了存储器的设计空间。本研究的重点有两个:1)研究当前MRAM技术中的设计问题以及器件级和电路级设计解决方案的建议。首先,我们分析标准1T-1R STT-MRAM中的不对称写入电流,并确定降低写入功率的潜力。为此,我们提出了低功耗电路设计技术,以平衡非对称写入电流并从写入功率和可靠性两个方面优化存储器设计。接下来,我们提出了一种新颖的MRAM器件结构,该结构利用自旋霍尔效应(SHE)来创建用于快速和高能效存储应用的差分存储单元。然后,我们提出了自旋轨道扭矩(SOT)MRAM的新的多级单元设计概念,以提高集成密度。 2)研究自旋设备,以实现专用于安全性和密码学应用的专用片上硬件,即真正的随机数生成器。

著录项

  • 作者

    Kim, Yusung.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号