首页> 外文学位 >Plasmonic Zero Waveguide Modes and Radiative Decay Engineering of Quantum Emitters.
【24h】

Plasmonic Zero Waveguide Modes and Radiative Decay Engineering of Quantum Emitters.

机译:等离子零波导模式和量子发射体的辐射衰减工程。

获取原文
获取原文并翻译 | 示例

摘要

This paper documents an investigation of plasmonic behavior and the application of plasmonic phenomena with the intended purpose of fabricating and manufacturing a novel zero-mode waveguide (ZMW). The conventional ZMW can focus incident light to tiny volumes on the order of zeptoliters (zL) in magnitude. This ability to focus light beyond the diffraction limit is promising for single molecule detection (SMD) particularly when investigating a sample of microM concentrations or beyond. While the prospect of having the excitation light intensity focused to zL volumes is desirable for SMD, the observer still requires that the intensity of light emissions from the molecule under investigation be sufficiently larger than the noise from the excitation light source, any fluorophores beyond the observation volume and other light emissions which may disrupt the sample study. The solutions under investigation may be susceptible to quenching; thus, the waveguide must be designed so as to apply a maximum intensity into a volume of minimal size all while detecting the enhanced emissions without damaging the sample. A conventional ZMW consisting of a 50nm diameter cylindrical etch of a 100nm thick Aluminum (Al) metal film lying atop a glass substrate produces zL-effective observation volumes.[16] We proceeded to design and simulate ZMW structures consisting of two or more metallic columns standing in a rectangular etch of a heterogeneous stack --- Gold and Aluminum --- atop a glass substrate. The waveguide takes advantage of plasmonic devices' capacity to both confine light and also enhance the fluorescence signal emanating from the confined volume.
机译:本文记录了对等离子行为的研究和等离子现象的应用,其目的是制造和制造新型零模波导(ZMW)。传统的ZMW可以将入射光聚焦到Zeptoliters(zL)量级的微小体积上。将光聚焦到衍射极限之外的能力对于单分子检测(SMD)很有希望,尤其是在研究microM浓度或更高浓度的样品时。尽管对于SMD而言,将激发光强度集中到zL体积的前景是可取的,但观察者仍然要求所研究分子的发光强度要比激发光源产生的噪声足够大,任何超出观察范围的荧光团体积和其他光发射可能会破坏样本研究。研究中的溶液可能易于淬灭;因此,必须设计波导,以便在检测增强的发射而又不损坏样品的同时,将最大强度施加到最小尺寸的体积中。常规的ZMW包括直径为50nm的圆柱刻蚀,该刻蚀位于玻璃基板上,厚度为100nm厚的铝(Al)金属膜,可产生有效的zL观测体积。[16]我们着手设计和模拟ZMW结构,该结构由两个或多个金属柱组成,这些金属柱位于玻璃基板顶部的异质堆叠(金和铝)矩形蚀刻中。波导利用了等离激元器件的能力来限制光,还增强了从限制体积发出的荧光信号。

著录项

  • 作者

    Gonzalez, David Cota.;

  • 作者单位

    University of California, Santa Cruz.;

  • 授予单位 University of California, Santa Cruz.;
  • 学科 Electrical engineering.
  • 学位 M.S.
  • 年度 2015
  • 页码 49 p.
  • 总页数 49
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号