首页> 外文学位 >Photocurrent Control in a Magnetic Field through Quantum Interference.
【24h】

Photocurrent Control in a Magnetic Field through Quantum Interference.

机译:通过量子干涉在磁场中进行光电流控制。

获取原文
获取原文并翻译 | 示例

摘要

Quantum-mechanical interference between excitation pathways can be used to inject photocurrents optically in semiconductors, the properties of which can be coherently controlled through the phases and polarizations of the optical pulses. In this thesis, coherent photocurrent control is investigated theoretically for two-dimensional semiconductor systems in a perpendicular magnetic field. The semiconductor systems are subjected to optical pulses with centre frequencies o 0 and 2o0, which excite interband transitions through one- and two-photon processes, selection rules for which are determined from envelope wave functions. It is shown using time-dependent perturbation theory that the interference between one- and two-photon pathways connecting a particular valence Landau level to two different but adjacent conduction Landau levels manifests itself as electron currents that rotate counterclockwise, while interference between pathways connecting two adjacent valence Landau levels to a particular conduction Landau level manifests itself as hole currents that rotate clockwise. The initial directions of the currents can be controlled by adjusting the polarizations and a relative phase parameter of the pulses.;The analysis is performed for a GaAs quantum well, monolayer graphene and bilayer graphene. For GaAs, the equally spaced Landau levels in each band lead to electron currents rotating at a single frequency and hole currents rotating at a different frequency. Monolayer and bilayer graphene allow currents with multiple frequency components as well as other peculiarities resulting from additional interference processes not present for GaAs.;The photocurrents in all of these systems radiate in the terahertz regime. This radiation is calculated for realistic experimental conditions, with scattering and relaxation processes accounted for phenomenologically.;Finally, the effect of Coulomb interactions on the coherent control process is considered for an undoped GaAs quantum well in a magnetic field. The interaction is treated in a simple first-order perturbation model, and it is determined that the main effect of Coulomb interactions between electrons and holes on the injected photocurrents is to produce quantitative differences through the energy levels of the system, but the main qualitative features remain unchanged.
机译:激发路径之间的量子机械干涉可用于以光学方式注入半导体中的光电流,可以通过光脉冲的相位和偏振来相干地控制其特性。本文从理论上研究了二维半导体系统在垂直磁场中的相干光电流控制问题。半导体系统受到中心频率分别为0和2o0的光脉冲,这些光脉冲通过一光子和两光子过程激发带间跃迁,其选择规则由包络波函数确定。使用时变摄动理论表明,将特定价态朗道能级连接到两个不同但相邻的传导朗道能级的单光子和双光子路径之间的干扰表现为电子电流逆时针旋转,而连接两个相邻的朗德能级的路径之间的干扰价朗道能级到特定的传导性朗道能级表现为顺时针旋转的空穴电流。可以通过调节脉冲的极化和相对相位参数来控制电流的初始方向。对GaAs量子阱,单层石墨烯和双层石墨烯进行分析。对于GaAs,每个频带中等距的Landau能级导致电子电流以单个频率旋转,而空穴电流以不同频率旋转。单层和双层石墨烯允许电流具有多个频率分量以及由于GaAs不存在的其他干扰过程而产生的其他特性。所有这些系统中的光电流以太赫兹辐射。该辐射是针对实际实验条件计算的,从现象学上讲是考虑了散射和弛豫过程。最后,对于磁场中未掺杂的GaAs量子阱,考虑了库仑相互作用对相干控制过程的影响。在简单的一阶微扰模型中处理了相互作用,并且确定电子和空穴之间的库仑相互作用对注入的光电流的主要影响是通过系统的能级产生定量差异,但是主要的定性特征维持不变。

著录项

  • 作者

    Rao, Kiran Murti.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Electromagnetics.;Quantum physics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号