首页> 外文学位 >Production of micellar casein concentrates using ceramic microfiltration membranes: Optimal process design and system operation.
【24h】

Production of micellar casein concentrates using ceramic microfiltration membranes: Optimal process design and system operation.

机译:使用陶瓷微滤膜生产胶束酪蛋白浓缩物:最佳工艺设计和系统操作。

获取原文
获取原文并翻译 | 示例

摘要

Microfiltration of skim milk using 0.1 mum ceramic membranes can separate micellar casein from serum protein. Both the micellar casein and serum proteins may be valuable food ingredients. To improve the commercial viability of the microfiltration process, the system should be designed and operated to minimize fixed (e.g., membrane area) and variable (i.e., energy) costs. As a first step, to determine what factors were important in process design, a theoretical model for the production of a micellar casein concentrate was developed. From the theoretical model it was determined that the use of ultrafiltration of skim milk prior to microfiltration could reduce the membrane area required. Additionally, it was found that the increasing following factors: number of stages, flux, and recirculation loop protein concentration further decreased the required membrane area. Finally, if the microfiltration feed was ultrafiltered skim milk, it was found that the optimal microfiltration feed protein concentration was 5.4% protein for a 5-stage process.;The next step was to evaluate the performance of ceramic graded permeability membranes with 3 mm and 4 mm channel diameters, by determining the limiting flux and serum protein removal at 8, 9 and 10% protein in the recirculation loop. The microfiltration feed was an ultrafiltered skim milk. The limiting flux decreased by approximately 24% as the recirculation loop protein concentration was increased from 8% to 10% for both the 3 mm and 4 mm channel diameter membranes. At each protein concentration the limiting flux was about 20% higher with the 4 mm compared to 3 mm channel diameter membranes. Additionally, the serum protein removal factor was higher on the 4 mm than 3 mm channel diameter membranes.;Finally, the impact of increasing the temperature of microfiltration above 50°C on membrane fouling and serum protein removal was determined. Increasing the temperature up to 65°C did not cause any detectable membrane fouling. Increasing the temperature of microfiltration decreased serum protein removal. However, higher temperature also decreased casein concentration in the permeate. Based on this work, it may be feasible to increase the temperature of microfiltration and possibly the microfiltration flux.
机译:使用0.1毫米陶瓷膜对脱脂牛奶进行微滤可以将胶束酪蛋白与血清蛋白分离。胶束酪蛋白和血清蛋白都可能是有价值的食品成分。为了提高微滤工艺的商业可行性,应该设计和操作该系统以使固定(例如,膜面积)和可变(即,能量)成本最小化。作为第一步,为了确定在工艺设计中哪些因素很重要,开发了胶束酪蛋白浓缩物生产的理论模型。从理论模型可以确定,在微滤之前使用脱脂奶超滤可以减少所需的膜面积。另外,发现增加的以下因素:级数,通量和再循环环蛋白浓度进一步降低了所需的膜面积。最后,如果微滤进料是超滤脱脂奶,则发现5步过程的最佳微滤进料蛋白质浓度为5.4%蛋白质;下一步是评估3毫米和5毫米的陶瓷梯度渗透膜的性能通过确定再循环回路中8%,9%和10%的蛋白的极限通量和血清蛋白去除率,确定4 mm的通道直径。微滤进料是超滤脱脂乳。对于3 mm和4 mm通道直径的膜,当再循环回路蛋白浓度从8%增加到10%时,极限通量减少了大约24%。在每种蛋白质浓度下,与3 mm通道直径的膜相比,4 mm的极限通量高约20%。此外,在4 mm通道直径的膜上,血清蛋白去除因子更高。最后,确定了将微滤温度提高到50°C以上对膜污染和血清蛋白去除的影响。将温度升高到65°C不会引起任何可检测的膜污染。提高微滤温度会降低血清蛋白去除率。但是,较高的温度也会降低渗透液中酪蛋白的浓度。基于这项工作,可以提高微滤温度,并可能提高微滤通量。

著录项

  • 作者

    Hurt, Emily Elizabeth.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Agriculture.;Nutrition.;Food science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:05

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号