首页> 外文学位 >Post-cracking characteristics of high performance fiber reinforced cementitious composites.
【24h】

Post-cracking characteristics of high performance fiber reinforced cementitious composites.

机译:高性能纤维增强水泥基复合材料的开裂后特性。

获取原文
获取原文并翻译 | 示例

摘要

The application of high performance fiber reinforced cement composites (HPFRCC) in structural systems depends primarily on the material's tensile response, which is a direct function of fiber and matrix characteristics, the bond between them, and the fiber content or volume fraction. The objective of this dissertation is to evaluate and model the post-cracking behavior of HPFRCC. In particular, it focused on the influential parameters controlling tensile behavior and the variability associated with them. The key parameters considered include: the stress and strain at first cracking, the stress and strain at maximum post-cracking, the shape of the stress-strain or stress-elongation response, the multiple cracking process, the shape of the resistance curve after crack localization, the energy associated with the multiple cracking process, and the stress versus crack opening response of a single crack. Both steel fibers and polymeric fibers, perceived to have the greatest potential for current commercial applications, are considered. The main variables covered include fiber type (Torex, Hooked, PVA, and Spectra) and fiber volume fraction (ranging from 0.75% to 2.0%). An extensive experimental program is carried out using direct tensile tests and stress-versus crack opening displacement tests on notched tensile prisms. The key experimental results were analysed and modeled using simple prediction equations which, combined with a composite mechanics approach, allowed for predicting schematic simplified stress-strain and stress-displacement response curves for use in structural modeling. The experimental data show that specimens reinforced with Torex fibers performs best, follows by Hooked and Spectra fibers, then PVA fibers. Significant variability in key parameters was observed througout suggesting that variability must be studied further. The new information obtained can be used as input for material models for finite element analysis and can provide greater confidence in using the HPFRC composites in structural applications. It also provides a good foundation to integrate these composites in conventional structural analysis and design.
机译:高性能纤维增强水泥复合材料(HPFRCC)在结构系统中的应用主要取决于材料的拉伸响应,这是纤维和基体特性,它们之间的结合以及纤维含量或体积分数的直接函数。本文的目的是评估和模拟HPFR​​CC的裂纹后行为。特别是,它着重于控制拉伸行为的影响参数以及与之相关的可变性。考虑的关键参数包括:第一次开裂时的应力和应变,最大开裂后的应力和应变,应力应变或应力-伸长响应的形状,多次开裂过程,开裂后的电阻曲线形状局部化,与多重裂纹过程相关的能量以及单个裂纹的应力与裂纹张开响应。考虑到认为钢纤维和聚合物纤维在当前商业应用中具有最大潜力。涵盖的主要变量包括纤维类型(Torex,钩形,PVA和Spectra)和纤维体积分数(范围为0.75%至2.0%)。在带缺口的拉伸棱镜上使用直接拉伸测试以及应力与裂纹开口位移测试进行了广泛的实验程序。使用简单的预测方程对关键的实验结果进行了分析和建模,结合了复合力学方法,可以预测用于结构建模的示意性简化应力-应变和应力-位移响应曲线。实验数据表明,用Torex纤维增强的样品性能最好,其次是钩形和Spectra纤维,然后是PVA纤维。整个过程中都观察到关键参数的显着可变性,表明必须进一步研究可变性。获得的新信息可以用作有限元分析材料模型的输入,并且可以为在结构应用中使用HPFRC复合材料提供更大的信心。它还为将这些复合材料集成到常规结构分析和设计中提供了良好的基础。

著录项

  • 作者

    Suwannakarn, Supat W.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Applied Mechanics.;Engineering Civil.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 297 p.
  • 总页数 297
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;工程材料学;建筑科学;
  • 关键词

  • 入库时间 2022-08-17 11:37:50

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号