首页> 外文学位 >Design, crystal growth, and physical properties of low-temperature thermoelectric materials.
【24h】

Design, crystal growth, and physical properties of low-temperature thermoelectric materials.

机译:低温热电材料的设计,晶体生长和物理特性。

获取原文
获取原文并翻译 | 示例

摘要

Thermoelectric materials serve as the foundation for two important modern technologies, namely 1) solid-state cooling, which enables small-area refrigeration without vibrations or moving parts, and 2) thermoelectric power generation, which has important implications for waste heat recovery and improved sources of alternative energy. Although the overall field of thermoelectrics research has been active for decades, and several consumer and industrial products have already been commercialized, the design and synthesis of new thermoelectrics that outperform long-standing state of the art materials has proven extremely challenging. This is particularly true for low-temperature refrigeration applications, which is the focus of this work; however, scientific advances in this area generally support power generation as well. In order to achieve more efficient materials for virtually all thermoelectric applications, improved materials design principles must be developed and synthetic procedures must be better understood. We aim to contribute to these goals by studying two classes of materials, namely 1) the tetradymites Bi2TeSe 2 and Bi2Te2Se, which are close relatives of state of the art thermoelectric cooling materials, and 2) Kondo insulating (-like) FeSb2 and FeSi, which possess anomalously enhanced low-temperature thermoelectric properties that arise from exotic electronic and magnetic properties. The organization of this dissertation is as follows: Chapter 1 is a brief perspective on solid-state chemistry. Chapter 2 presents experimental methods for synthesizing and characterizing thermoelectric materials. In Chapter 3, two original research projects are discussed: first, work on the tetradymite Bi2TeSe2 doped with Sb to achieve an n- to p-type transition, and second, the tetradymite Bi2Te2Se with chemical defects through two different methods. Chapter 4 gives the magnetic and transport properties of FeSb 2--RuSb2 alloys, a family of compounds exemplifying what we consider to be the next generation of thermoelectric materials for low-temperature cooling due to their anomalously enhanced low-temperature thermoelectric properties, along with an outlook for seeking additional materials with similarly enhanced properties. Lastly, in Chapter 5, a brief outlook on the future of thermoelectrics is discussed, along with our current and future work on FeSi-RuSi alloys.
机译:热电材料是两项重要现代技术的基础,即:1)固态冷却,可实现无振动或运动部件的小面积制冷; 2)热电发电,这对废热的回收和改善的能源有重要意义替代能源。尽管热电学研究的整个领域已经活跃了几十年,并且已经有几种消费品和工业产品已经商品化,但事实证明,优于长期使用的最先进材料的新型热电学的设计和合成已极具挑战性。对于低温制冷应用尤其如此,这是这项工作的重点。然而,该领域的科学进步通常也支持发电。为了在几乎所有热电应用中获得更有效的材料,必须制定改进的材料设计原则,并且必须更好地理解合成程序。我们旨在通过研究两类材料为实现这些目标做出贡献,即1)四聚体Bi2TeSe 2和Bi2Te2Se,它们是最先进的热电冷却材料的近亲,以及2)近藤绝缘(类)FeSb2和FeSi,由于异常的电子和磁性,它们具有异常增强的低温热电性能。本文的组织结构如下:第一章是固体化学的简要介绍。第2章介绍了合成和表征热电材料的实验方法。在第3章中,讨论了两个原始的研究项目:首先,对掺有Sb的Bidymite Bi2TeSe2进行工作,以实现从n型到p型的转变;其次,通过两种不同的方法对具有化学缺陷的Bidymite Bi2Te2Se进行研究。第4章介绍了FeSb 2--RuSb2合金的磁性和传输性能。FeSb2--RuSb2合金是一类化合物,这些化合物由于异常地增强了低温热电性能而被认为是下一代用于低温冷却的热电材料,以及寻找具有类似增强特性的其他材料的前景。最后,在第5章中,讨论了对热电学的未来的简要展望,以及我们对FeSi-RuSi合金的当前和未来工作。

著录项

  • 作者

    Fuccillo, Michael K.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Chemistry Inorganic.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号