首页> 外文学位 >Maize transformation efficiency increase via RNAi-mediated suppression of chromatin-associated genes.
【24h】

Maize transformation efficiency increase via RNAi-mediated suppression of chromatin-associated genes.

机译:通过RNAi介导的染色质相关基因的抑制,提高了玉米转化效率。

获取原文
获取原文并翻译 | 示例

摘要

Chromatin remodeling plays a crucial role in gene regulation and expression. A more complete understanding of the role of chromatin effects on transgene integration and expression is needed to facilitate plant transformation experiments and to understand mechanisms of lateral DNA transfer. Suppression of chromatin-associated genes (chromatin genes) was therefore hypothesized to increase maize transformation efficiencies via increased transgene integration or reduced transgene silencing. RNA interference (RNAi)-inducing inverted-repeat (IR) vectors targeting maize chromatin genes SGB101, HON102, MBD109, SDG119, CHR110, GTC101, and SRT101 were transformed into maize via biolistics in replicated experiments to test for effects of chromatin gene suppression on primary transformation efficiency. The maize chromatin gene, SGB101, is the probable maize ortholog of yeast ARD1, an N-terminal acetyltransferase required for telomere and mating-loci silencing. Over the course of twelve independent, replicated experiments, the average stable transformation rate for the IR vector targeting SGB101 was 8.5%, and was statistically significantly higher than the IR backbone base vector, pMCG161, efficiency of 4.3%, representing a two-fold increase in transformation efficiency. The maize chromatin gene, HON102, encodes a linker histone protein within the Histone H1 homology group. The average stable transformation rate for the IR vector targeting HON102 was 7.5%, and was also statistically significantly higher than the average transformation rate of 4.2% for pMCG161 over eleven independent, replicated experiments. T1 RNAi lines were then re-transformed with a control vector and stable transformation efficiencies compared between sibling 'null' and RNA-silenced embryos; however, the low overall transformation efficiencies generated with the nptII selectable marker led to insufficient data for significant conclusions to be drawn. The role of HON102 and the histone H1 family in maize transformation was further elucidated by the suppression of either HON102 or HMGA102 individually, or both genes simultaneously. Suppression of HON102 resulted in a statistically significant increase in the average stable transformation efficiency (9.0%) when compared with the average pMCG161 baseline efficiency of 4.1%. These experiments demonstrate that suppression of maize chromatin genes that are hypothesized to affect chromatin conformation and/or gene silencing can lead to increased stable maize transformation efficiencies of at least two-to-three fold over that of the control.
机译:染色质重塑在基因调控和表达中起着至关重要的作用。为了促进植物转化实验和了解DNA横向转移的机制,需要对染色质对转基因整合和表达的作用有一个更完整的了解。因此,假设抑制染色质相关基因(染色质基因)可通过增加转基因整合或减少转基因沉默来提高玉米转化效率。在复制实验中通过生物弹药将靶向玉米染色质基因SGB101,HON102,MBD109,SDG119,CHR110,GTC101和SRT101的RNA干扰(RNAi)诱导的反向重复(IR)载体转化为玉米,以测试染色质基因抑制对初级转化效率。玉米染色质基因SGB101是酵母ARD1的玉米直系同源基因,酵母ARD1是端粒和交配位点沉默所需的N端乙酰基转移酶。在十二个独立的重复实验过程中,靶向SGB101的IR载体的平均稳定转化率为8.5%,在统计学上显着高于IR骨干基础载体pMCG161,效率为4.3%,是原来的两倍。在转换效率上。玉米染色质基因HON102,在组蛋白H1同源性组内编码接头组蛋白。靶向HON102的IR载体的平均稳定转化率为7.5%,并且在11个独立的重复实验中,统计学上也明显高于pMCG161的4.2%的平均转化率。然后将T1 RNAi系用对照载体进行转化,并在同级“无效”和RNA沉默的胚之间进行比较,获得稳定的转化效率。然而,使用nptII选择性标记产生的总体转化效率较低,导致数据不足,无法得出重要结论。通过分别抑制HON102或HMGA102或同时抑制两个基因,进一步阐明了HON102和组蛋白H1家族在玉米转化中的作用。与平均pMCG161基线平均效率4.1%相比,HON102的抑制导致平均稳定转化效率(9.0%)在统计学上显着增加。这些实验表明,假定影响染色质构象和/或基因沉默的玉米染色质基因的抑制可导致稳定的玉米转化效率提高,其转化效率是对照的至少两到三倍。

著录项

  • 作者

    McGill, Mary Ann.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Agriculture Agronomy.;Agriculture Plant Culture.;Biology Genetics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 303 p.
  • 总页数 303
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号