首页> 外文学位 >VEHICLE HANDLING: EFFECTS OF LATERAL ASYMMETRIES ON TURNING RESPONSE, AND SOME DEVELOPMENTS IN CLOSED-LOOP CONTROL.
【24h】

VEHICLE HANDLING: EFFECTS OF LATERAL ASYMMETRIES ON TURNING RESPONSE, AND SOME DEVELOPMENTS IN CLOSED-LOOP CONTROL.

机译:车辆操纵:横向不对称对转向响应的影响以及闭环控制中的一些发展。

获取原文
获取原文并翻译 | 示例

摘要

The effects of several lateral asymmetries typically existing in passenger vehicles are studied using two different mathematical vehicle models: a non-linear three-degree-of-freedom model and a comprehensive seventeen-degree-of-freedom model. Equations describing the asymmetric configurations are developed. Response asymmetry measures and vehicle asymmetry parameters are defined and the sensitivity of the response to various types of asymmetries is determined for steady-state turns and a standard transient maneuver. It is found that: (i) typical levels of vehicle asymmetry can cause substantial response asymmetry in severe maneuvers, (ii) the simple model and complex model display similar response asymmetry except for vehicle configurations with substantial roll steer, (iii) tire asymmetry and off-center loading cause the greatest response asymmetry, (iv) the sensitivity of response to various asymmetry parameters is somewhat different in steady turning than in transient maneuvers.; Closed-loop vehicle control is considered using a describing-function model of the human driver. This model is developed and programmed to follow a curved road path. A technique is developed for determining unique parameters for this model from measured or calculated yaw rate response data. Stability analyses are performed for a driver/vehicle system with altered vehicle parameters in both the frequency and time domains, the latter using the three-degree-of-freedom vehicle model. It is found that a major change in vehicle properties is required to cause instability.; Closed-loop control of an asymmetric vehicle is investigated. It is found that typical asymmetry levels reduce system stability but do not cause instability.
机译:使用两种不同的数学车辆模型来研究乘用车中通常存在的几个横向不对称的影响:非线性三自由度模型和全面的十七自由度模型。发展了描述不对称构型的方程。定义了响应不对称度量和车辆不对称参数,并确定了针对稳态转弯和标准瞬态操纵的对各种类型的不对称响应的灵敏度。发现:(i)典型的车辆不对称程度在严重的操纵中可能导致相当大的响应不对称;(ii)简单模型和复杂模型显示出类似的响应不对称,除了具有明显侧倾转向的车辆配置之外,(iii)轮胎不对称和偏心载荷会导致最大的响应不对称性;(iv)在稳定转向中,与瞬态操纵相比,对各种不对称参数的响应灵敏度有所不同。使用人类驾驶员的描述功能模型来考虑车辆的闭环控制。该模型的开发和编程遵循弯曲的道路。开发了一种技术,用于根据测量或计算的偏航角速度响应数据确定该模型的唯一参数。对在频域和时域中具有变化的车辆参数的驾驶员/车辆系统进行稳定性分析,后者使用三自由度车辆模型。发现需要对车辆性能进行重大改变以引起不稳定。研究了非对称车辆的闭环控制。发现典型的不对称度会降低系统稳定性,但不会引起不稳定。

著录项

  • 作者

    WILSON, DOUGLAS LEE.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Automotive.
  • 学位 Ph.D.
  • 年度 1982
  • 页码 333 p.
  • 总页数 333
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术及设备;
  • 关键词

  • 入库时间 2022-08-17 11:51:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号