首页> 外文学位 >Investigation into the use of glassy gelatin beads as a swelling-controlled drug delivery system.
【24h】

Investigation into the use of glassy gelatin beads as a swelling-controlled drug delivery system.

机译:关于使用玻璃状明胶珠作为溶胀控制药物递送系统的研究。

获取原文
获取原文并翻译 | 示例

摘要

The fundamental principle of a swelling-controlled drug delivery system is nonFickian transport of solvent into a glassy polymer matrix. The velocity of the advancing solvent front can determine the drug release rate.; Initial stages of the development of gelatin as a swelling-controlled drug delivery system required the identification and characterization of influential parameters associated with the swelling behavior of the glassy gelatin matrix. For example, swelling studies using different solvents demonstrated a size selectivity, in which a known solvent for gelatin could not penetrate the glassy matrix due to its large molecular size. Also, by the estimation of effective crosslink density, the distinction was made between chemical and physical crosslinks.; Two moving boundaries are associated with this swelling system, the penetrating water front and outer swelling gelatin front. Both boundaries were measured directly with an optical microscope as a function of time. Interestingly, the water front profile exhibited three distinct regions: an initial square root of time region (Fickian), a steady state velocity region (apparent Case II transport), and a final region where the front accelerated near the bead's center (apparent Supercase II transport).; Subsequent studies focused primarily on variables that affect the water front steady state velocity which include: initial size of a dry bead, crosslink density, solvent-induced stress on the glass-gel interface, and most importantly, the efficiency in molecular packing of the glassy matrix (swelling history). A correlating function was then proposed on the basis of dimensional analysis and experimental observations.; Incorporation of the model drug, isoniazid (INH), into gelatin beads altered the structure and hence swelling behavior of the glassy matrix. Plasticization of gelatin chains by INH was postulated as the primary factor for inducing the increase in water front velocity for beads with greater drug content. Fractional release rates were studied as a function of crosslink density, drug load, and device size, in addition to moving boundary analysis. These combined results provide evidence that INH release rates were dependent on the water front velocity.
机译:溶胀控制的药物输送系统的基本原理是将溶剂非费克式地输送到玻璃状聚合物基质中。前进的溶剂前沿的速度可以确定药物的释放速率。明胶作为溶胀控制的药物递送系统的开发的初始阶段需要鉴定和表征与玻璃状明胶基质的溶胀行为相关的影响参数。例如,使用不同溶剂的溶胀研究证明了尺寸选择性,其中已知的明胶溶剂由于其分子大小大而无法穿透玻璃状基质。同样,通过估计有效交联密度,在化学交联和物理交联之间进行了区分。该溶胀系统有两个移动边界,即渗透水前沿和外膨胀明胶前沿。用光学显微镜直接测量两个边界随时间的变化。有趣的是,水锋剖面表现出三个不同的区域:时间区域的初始平方根(菲克),稳态速度区域(表观Case II运移)和最终区域,在该区域前缘在珠子中心附近加速(表观Supercase II)运输)。;随后的研究主要集中在影响水前沿稳态速度的变量上,这些变量包括:干珠的初始尺寸,交联密度,玻璃凝胶界面上溶剂诱导的应力,最重要的是,玻璃态分子的填充效率矩阵(膨胀历史)。然后在尺寸分析和实验观察的基础上提出了一个相关函数。将模型药物异烟肼(INH)掺入明胶珠中可改变其结构,从而改变玻璃状基质的溶胀行为。假定INH对明胶链的增塑作用是引起药物含量更高的珠子引起水前速度增加的主要因素。除移动边界分析外,还研究了分数释放速率与交联密度,载药量和装置尺寸的关系。这些综合结果提供了证据,表明INH释放速率取决于水前沿速度。

著录项

  • 作者

    Klech, Cathy Marie.;

  • 作者单位

    The University of Connecticut.;

  • 授予单位 The University of Connecticut.;
  • 学科 Health Sciences Pharmacy.
  • 学位 Ph.D.
  • 年度 1987
  • 页码 297 p.
  • 总页数 297
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 药剂学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号