首页> 外文学位 >Theoretical and experimental study of solid state complex borohydride hydrogen storage materials.
【24h】

Theoretical and experimental study of solid state complex borohydride hydrogen storage materials.

机译:固态复合硼氢化物储氢材料的理论和实验研究。

获取原文
获取原文并翻译 | 示例

摘要

Materials that are light weight, low cost and have high hydrogen storage capacity are essential for on-board vehicular applications. Some reversible complex hydrides are alanates and amides but they have lower capacity than the DOE target (6.0 wt %) for 2010. High capacity, light weight, reversibility and fast kinetics at lower temperature are the primary desirable aspects for any type of hydrogen storage material. Borohydride complexes as hydrogen storage materials have recently attracted great interest.;Understanding the above parameters for designing efficient complex borohydride materials requires modeling across different length and time scales. A direct method lattice dynamics approach using ab initio force constants is utilized to calculate the phonon dispersion curves. This allows us to establish stability of the crystal structure at finite temperatures. Density functional theory (DFT) is used to calculate electronic properties and the direct method lattice dynamics is used to calculate the finite temperature thermodynamic properties. These computational simulations are applied to understand the crystal structure, nature of bonding in the complex borohydrides and mechanistic studies on doping to improve the kinetics and reversibility, and to improve the hydrogen dynamics to lower the decomposition temperature.;A combined theoretical and experimental approach can better lead us to designing a suitable complex material for hydrogen storage. To understand the structural, bulk properties and the role of dopants and their synergistic effects on the dehydrogenation and/or reversible rehydrogenation characteristics, these complex hydrides are also studied experimentally in this work.
机译:重量轻,成本低,储氢量高的材料对于车载应用至关重要。一些可逆的复合氢化物是丙二酸盐和酰胺,但它们的容量低于2010年DOE的目标(6.0重量%)。在任何类型的储氢材料中,高容量,轻量,可逆性和在较低温度下的快速动力学是主要要求的方面。硼氢化物配合物作为储氢材料近来引起了人们的极大兴趣。了解上述用于设计有效的复合硼氢化物材料的参数需要跨越不同的长度和时间尺度进行建模。使用从头算力常数的直接方法晶格动力学方法来计算声子色散曲线。这使我们能够在有限的温度下建立晶体结构的稳定性。密度泛函理论(DFT)用于计算电子性质,直接方法晶格动力学用于计算有限温度热力学性质。这些计算模拟被用于了解晶体结构,复杂硼氢化物中键合的性质以及掺杂的机理研究,以改善动力学和可逆性,并改善氢动力学以降低分解温度。更好地引导我们设计出一种适合于储氢的复杂材料。为了了解结构,整体性质以及掺杂剂的作用及其对脱氢和/或可逆性再氢化特性的协同作用,在这项工作中还对这些复杂的氢化物进行了实验研究。

著录项

  • 作者

    Choudhury, Pabitra.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Alternative Energy.;Sustainability.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:55

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号