首页> 外文学位 >Biological control of excessive phytoplankton and enhancement of aquacultural production.
【24h】

Biological control of excessive phytoplankton and enhancement of aquacultural production.

机译:过度浮游植物的生物控制和水产养殖产量的提高。

获取原文
获取原文并翻译 | 示例

摘要

Phytoplankton have many, sometimes antagonistic effects on aquacultural production. Although algae form the basis of the food chain and provide most of the dissolved oxygen in fish ponds, dense phytoplankton cause severe problems, e.g., insufficient dissolved oxygen, algal die-offs, and off-flavor of fish. Current methods of managing phytoplankton are generally ineffective or counter-productive. To manage phytoplankton properly, fish culturists must understand the mechanisms controlling algal dynamics. A literature review, with emphasis on limnology and freshwater ecology, suggests new views of algae-related problems and ways to solve them. For example, algal die-offs may result from severe nutrient depletion, and dense algae of any taxa, not just blue-greens, may produce off-flavor.; Modeling of phytoplankton-oxygen dynamics demonstrates that pond oxygen levels peak at intermediate algal densities where Net Primary Productivity (NPP) is highest. Thus, fish culturists could improve dissolved oxygen levels by encouraging algal growth while maintaining algal biomass at levels optimal for NPP. Biological control of phytoplankton can achieve both goals at once. However, a review of experiments with filter-feeding fish suggests that fish alone cannot control algal biomass in fish ponds. In most trials, addition of filter-feeding fish increased algal biomass.; Feeding trials with silver carp (Hypophthalmichthys molitrix) at 20, 25, and 30{dollar}spcirc{dollar}C support this conclusion. Silver carp filter more particles as temperature, particle size, and fish size increase. With particles smaller than 70 {dollar}mu{dollar}m, filtration rates declined with particle size. Silver carp do not efficiently filter particles below 8 {dollar}mu{dollar}m. Therefore, these fish will not control algal biomass.; A new technique for biological control of phytoplankton, integrated control with herbivorous zooplankton and silver carp, was tested in large tanks and experimental ponds. Zooplankton, which eat small phytoplankton, and silver carp, which eat large phytoplankton, together eat all sizes of phytoplankton. The technique maintains coexistence of zooplankton with silver carp by excluding the carp from part of the water column. In 1000 l tanks, the combination of zooplankton and silver carp reduced algal biomass by 95% and increased algal diversity. However, in experimental ponds, the refuge did not protect zooplankton and enhance their survival nor did it reduce algal biomass.
机译:浮游植物对水产养殖生产有许多有时是拮抗作用。尽管藻类构成了食物链的基础并提供了鱼塘中大部分的溶解氧,但是密集的浮游植物会引起严重的问题,例如溶解氧不足,藻类死亡和鱼类异味。当前管理浮游植物的方法通常无效或适得其反。为了适当地管理浮游植物,鱼类养殖者必须了解控制藻类动力学的机制。一篇针对植物学和淡水生态学的文献综述提出了与藻类有关的问题及其解决方法的新观点。例如,藻类的死亡可能是由于营养物质的严重消耗而造成的,任何类群的密集藻类(不仅是蓝绿色的藻类)都可能产生异味。浮游植物氧气动力学模型表明,池塘中的氧气水平在净初级生产力(NPP)最高的中等藻类密度处达到峰值。因此,鱼类养殖者可以通过鼓励藻类生长同时将藻类生物量保持在最适合NPP的水平来提高溶解氧水平。浮游植物的生物防治可以同时实现两个目标。但是,对过滤性鱼类的实验进行的回顾表明,仅靠鱼类无法控制鱼塘中的藻类生物量。在大多数试验中,添加滤食鱼会增加藻类生物量。用20、25和30 spcirc {dollar} C的silver鱼(Hypophthalmichthys molitrix)喂养试验证明了这一结论。随着温度,粒度和鱼尺寸的增加,fish鱼会过滤更多的颗粒。对于小于70 {μm的颗粒,过滤速率随粒度而下降。鱼不能有效地过滤低于8 {μm}美元的颗粒。因此,这些鱼将不会控制藻类生物量。在大型水箱和实验池中试验了一种新的生物防治浮游植物的技术,即与草食性浮游动物和silver鱼的综合控制。吃小浮游植物的浮游动物和吃大浮游植物的silver鱼一起吃各种大小的浮游生物。通过从水柱的一部分中排除鲤鱼,该技术可保持浮游动物与silver鱼的共存。在1000升的水箱中,浮游动物和silver鱼的组合使藻类生物量减少了95%,并增加了藻类多样性。但是,在实验池塘中,该避难所不能保护浮游动物并不能提高其生存率,也不能减少藻类生物量。

著录项

  • 作者

    Smith, Daniel Wilkins, III.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Biology Limnology.; Agriculture Animal Culture and Nutrition.; Biology Ecology.
  • 学位 Ph.D.
  • 年度 1987
  • 页码 206 p.
  • 总页数 206
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 饲料;生态学(生物生态学);
  • 关键词

  • 入库时间 2022-08-17 11:50:58

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号