首页> 外文学位 >Nonlinear instability of liquid layers.
【24h】

Nonlinear instability of liquid layers.

机译:液体层的非线性不稳定性。

获取原文
获取原文并翻译 | 示例

摘要

The nonlinear instability of two superposed viscous liquid layers in planar and axisymmetric configurations is investigated. In the planar configuration, the light layer fluid is bounded below by a wall and above by a heavy semiinfinite fluid. Gravity drives the instability. In the first axisymmetric configuration, the layer is confined between a cylindrical wall and a core of another fluid. In the second, a thread is suspended in an infinite fluid. Surface tension forces drive the instability in the axisymmetric configurations.; The nonlinear evolution of the fluid-fluid interface is computed for layers of arbitrary thickness when their dynamics are fully coupled to those of the second fluid. Under the assumption of creeping flow, the flow field is represented by an interfacial distribution of Green's functions. A Fredholm integral equation of the second kind for the strength of the distribution is derived and then solved using an iterative technique. The Green's functions produce flow fields which are periodic in the direction parallel to the wall and have zero velocity on the wall.; For small and moderate surface tension, planar layers evolve into a periodic array of viscous plumes which penetrate into the overlying fluid. The morphology of the plumes depends on the surface tension and the ratio of the fluid viscosities. As the viscosity of the layer increases, the plumes change from a well defined drop on top of a narrow stem to a compact column of rising fluid.; The capillary instability of cylindrical interfaces and interfaces in which the core thickness varies in the axial direction are investigated. In both the unbounded and wall bounded configurations, the core evolves into a periodic array of elongated fluid drops connected by thin, almost cylindrical fluid links. The characteristics of the drop-link structure depend on the core thickness, the ratio of the core radius to the wall radius, and the ratio of the fluid viscosities. The factors controlling the relative volumes of the drop and link are discussed. The nonlinear evolutions are compared with the predictions of a variational theory and with those of lubrication theory.
机译:研究了平面和轴对称结构中两个叠加的粘性液体层的非线性不稳定性。在平面配置中,轻层流体在下面被壁限制,在上面被重的半无限流体限制。重力驱动不稳定。在第一轴对称构造中,该层被限制在圆柱壁和另一种流体的芯之间。在第二种方法中,将一条线悬在无限大的流体中。表面张力驱动轴对称结构的不稳定性。当流体-流体界面的动力学与第二流体的动力学完全耦合时,可针对任意厚度的层计算流体-流体界面的非线性演化。在蠕变流动的假设下,流场由格林函​​数的界面分布表示。推导第二种关于分布强度的Fredholm积分方程,然后使用迭代技术对其求解。格林函数产生的流场在平行于壁的方向上是周期性的,并且在壁上的速度为零。对于较小和中等的表面张力,平面层会演变成粘性羽流的周期性阵列,并渗透到上层流体中。羽流的形态取决于表面张力和流体粘度的比率。随着层的粘度增加,羽流从狭窄茎干上的明确滴落变为上升流体的紧凑柱。研究了圆柱状界面和纤芯厚度沿轴向变化的界面的毛细管不稳定性。在无界和壁有界的配置中,核心都演变成由细长的,几乎是圆柱形的流体连接所连接的细长液滴的周期性阵列。支链结构的特性取决于芯厚度,芯半径与壁半径的比率以及流体粘度的比率。讨论了控制分支和链接的相对大小的因素。将非线性演化与变分理论和润滑理论的预测进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号