首页> 外文学位 >Precise satellite orbit determination with particular application to ERS-1.
【24h】

Precise satellite orbit determination with particular application to ERS-1.

机译:精确的卫星轨道确定,特别适用于ERS-1。

获取原文
获取原文并翻译 | 示例

摘要

The motivation behind this study is twofold. First to assess the accuracy of ERS-1 long arc ephemerides using state of the art models. Second, to develop improved methods for determining precise ERS-1 orbits using either short or long arc techniques. The SATAN programs, for the computation of satellite orbits using laser data were used. Several facilities were added to the original programs: the processing of PRARE range and altimeter data, and a number of algorithms that allow more flexible solutions by adjusting a number of additional parameters. The first part of this study, before the launch of ERS-1, was done with SEAS AT data. The accuracy of SEASAT orbits computed with PRARE simulated data has been determined. The effect of temporal distribution of tracking data along the arc and the extent to which altimetry can replace range data have been investigated. The second part starts with the computation of ERS-1 long arc solutions using laser data. Some aspects of modelling the two main forces affecting ERS-l's orbit are investigated. With regard to the gravitational forces, the adjustment of a set of geopotential coefficients has been considered. With respect to atmospheric drag, extensive research has been carried out on determining the influence on orbit accuracy of the measurements of solar fluxes (P10.7 indices) and geomagnetic activity (Kp indices) used by the atmospheric model in the computation of atmospheric density at satellite height. Two new short arc methods have been developed: the Constrained and the Bayesian method. Both methods are dynamic and consist of solving for the 6 osculating elements. Using different techniques, both methods overcome the problem of normal matrix ill- conditioning by constraining the solution. The accuracy and applicability of these methods are discussed and compared with the traditional non-dynamic TAR method.
机译:这项研究的动机是双重的。首先,使用最新模型评估ERS-1长弧星历表的准确性。其次,开发使用短弧或长弧技术确定精确ERS-1轨道的改进方法。使用了SATAN程序,用于使用激光数据计算卫星轨道。原始程序中增加了一些功能:PRARE范围和高度计数据的处理,以及通过调整许多其他参数可以提供更灵活解决方案的多种算法。在ERS-1发射之前,该研究的第一部分是使用SEAS AT数据完成的。已确定利用PRARE模拟数据计算出的SEASAT轨道的准确性。已经研究了跟踪数据沿弧线的时间分布的影响以及测高仪可以替代距离数据的程度。第二部分从使用激光数据计算ERS-1长弧解开始。研究了影响ERS-1轨道的两个主力建模的某些方面。关于重力,已经考虑调整一组地势系数。关于大气阻力,已经进行了广泛的研究,以确定大气模型在计算大气密度时使用的太阳通量(P10.7指数)和地磁活动(Kp指数)的测量对轨道精度的影响。卫星高度。已经开发了两种新的短弧方法:约束方法和贝叶斯方法。两种方法都是动态的,由求解6个密合元素组成。两种方法都使用不同的技术,通过约束解决方案来克服正常矩阵不适的问题。讨论了这些方法的准确性和适用性,并与传统的非动态TAR方法进行了比较。

著录项

  • 作者单位

    University of London, University College London (United Kingdom).;

  • 授予单位 University of London, University College London (United Kingdom).;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 1993
  • 页码 301 p.
  • 总页数 301
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号