首页> 外文学位 >Structural characterization of nanocrystalline and amorphous tungsten(molybdenum)-iron(manganese) alloys prepared by mechanical alloying.
【24h】

Structural characterization of nanocrystalline and amorphous tungsten(molybdenum)-iron(manganese) alloys prepared by mechanical alloying.

机译:机械合金化制备的纳米晶和非晶态钨(钼)-铁(锰)合金的结构表征。

获取原文
获取原文并翻译 | 示例

摘要

Pure Fe and W powders, and the powder mixtures of W{dollar}sb{lcub}rm x{rcub}{dollar}Fe{dollar}sb{lcub}rm 1-x{rcub}{dollar} (0.20 {dollar}le{dollar} x {dollar}le{dollar} 0.75), W{dollar}sb{lcub}50{rcub}{dollar}Mn{dollar}sb{lcub}50{rcub},{dollar} Mo{dollar}sb{lcub}50{rcub}{dollar}Fe{dollar}sb{lcub}50{rcub}{dollar} and Mo{dollar}sb{lcub}50{rcub}{dollar}Mn{dollar}sb{lcub}50{rcub}{dollar} were milled in a SPEX high energy mixer/mill under an argon atmosphere for different periods of time. Various parameters of the milling process, such as milling time, milling atmosphere, ball-to-powder weight ratio, and the composition were studied for the W-Fe system. X-ray diffraction was employed to characterize the microstructure of the milled powders, and electron microscopy was used to determine the particle morphology.; It was found that for pure Fe, only a nanocrystalline phase was formed after prolonged milling time (up to 100h), while for W{dollar}sb{lcub}rm x{rcub}{dollar}Fe{dollar}sb{lcub}rm 1-x{rcub}{dollar} (x {dollar}ge{dollar} 0.5), within 24h, an amorphous phase of W-Fe was formed in addition to the nanocrystalline W phase. Similar results were also observed for W{dollar}sb{lcub}50{rcub}{dollar}Mn{dollar}sb{lcub}50{rcub}{dollar}, Mo{dollar}sb{lcub}50{rcub}{dollar}Fe{dollar}sb{lcub}50{rcub}{dollar} and Mo{dollar}sb{lcub}50{rcub}{dollar}Mn{dollar}sb{lcub}50{rcub}{dollar} alloys.; The structure of the nanocrystalline phase of the milled powders was evaluated from the broadening of the powder pattern peaks using the Warren-Averbach method and integral-breadth method to determine the particle size and microstrain. After prolonged milling time ({dollar}ge{dollar}20h), the particle size {dollar}langle{dollar}D{dollar}rangle{dollar} and microstrain {dollar}langle(epsilonsb{lcub}rm L=50{rcub})sp2ranglesp{lcub}1/2{rcub}{dollar} of W in the alloys reached limiting values of 50A({dollar}pm{dollar}5A) and 0.6%({dollar}pm{dollar}0.1%), respectively.; The total interference function I(K) and the reduced atomic distribution function G{dollar}sb{lcub}rm I{rcub}{dollar}(r) of the amorphous W{dollar}sb{lcub}50{rcub}{dollar}Fe{dollar}sb{lcub}50{rcub}{dollar} alloy were obtained from the X-ray diffraction pattern. Both functions were dominated by the W-W and W-Fe atom pairs. The first maximum of G{dollar}sb{lcub}rm I{rcub}{dollar}(r) was found to be at r{dollar}sb1{dollar} = 2.74A, close to the interatomic distance in crystalline W.; To study the effect of isomorphous substitution of Mo for W and Mn for Fe, W{dollar}sb{lcub}50{rcub}{dollar}Mn{dollar}sb{lcub}50{rcub},{dollar} Mo{dollar}sb{lcub}50{rcub}{dollar}Fe{dollar}sb{lcub}50{rcub}{dollar} and Mo{dollar}sb{lcub}50{rcub}{dollar}Mn{dollar}sb{lcub}50{rcub}{dollar} alloys were also investigated. Comparisons among these four alloys showed that the structures were similar, indicating that Mo and Mn can be used as isomorphs for W and Fe, respectively.; W{dollar}sb{lcub}50{rcub}{dollar}Fe{dollar}sb{lcub}50{rcub}{dollar} powders, mechanically alloyed for different periods of time, corresponding to predominantly nanocrystalline or amorphous structure, were compacted at room temperature and pressures up to 1720 MPa (250 ksi). A maximum density of {dollar}sim{dollar}70% of the theoretical value was obtained for a compact which was 11 mm in diameter and 1.3 mm thick. Electron microscopy was used to investigate the effect of ball milling on particle morphology and interparticle bonding. After 100h of milling, the size of the powder particles was reduced from 12{dollar}mu{dollar}m for W and 5{dollar}mu{dollar}m for Fe to an average size of {dollar}sim{dollar}1{dollar}mu{dollar}m.
机译:纯Fe和W粉末,以及W {dollar} sb {lcub} rm x {rcub} {dollar} Fe {dollar} sb {lcub} rm 1-x {rcub} {dollar}(0.20 {dollar} le {dollar} x {dollar} le {dollar 0.75),W {dollar} sb {lcub} 50 {rcub} {dollar} Mn {dollar} sb {lcub} 50 {rcub},{dollar} Mo {dollar} sb {lcub} 50 {rcub} {dollar} Fe {dollar} sb {lcub} 50 {rcub} {dollar}和Mo {dollar} sb {lcub} 50 {rcub} {dollar} Mn {dollar} sb {lcub}将50 {rcub} {dollar}在SPEX高能混合器/磨中在氩气气氛下研磨不同的时间。研究了W-Fe系统的各种研磨工艺参数,例如研磨时间,研磨气氛,球粉重量比和组成。用X射线衍射表征磨细的粉末的微观结构,并用电子显微镜确定颗粒的形态。已发现,对于纯铁,延长的研磨时间(长达100h)仅形成纳米晶相,而对于W {dollar} sb {lcub} rm x {rcub} {dollar} Fe {dollar} sb {lcub} rm 1-x {rcub} {dollar}(x {dollar} ge {dollar} 0.5),在24h内,除了纳米晶W相外,还形成了W-Fe的非晶相。对于W {dollar} sb {lcub} 50 {rcub} {dollar} Mn {dollar} sb {lcub} 50 {rcub} {dollar},Mo {dollar} sb {lcub} 50 {rcub} {美元} Fe {dollar} sb {lcub} 50 {rcub} {dollar}和Mo {dollar} sb {lcub} 50 {rcub} {dollar} Mn {dollar} sb {lcub} 50 {rcub} {dollar}合金。 ;使用Warren-Averbach方法和积分宽度方法,通过粉末图案峰的加宽来评估研磨粉末的纳米晶相的结构,以确定粒径和微应变。经过延长的研磨时间({geal} ge {dollar} 20h),粒径{dollar} langle {dollar} D {dollar} rangle {dollar}和微应变{dollar} langle(epsilonsb {lcub} rm L = 50 {rcub })sp2ranglesp {lcub} 1/2 {rcub} {dollar}的W达到极限值50A({pmlar} pm {dollar} 5A)和0.6%({dollar} pm {dollar} 0.1%),分别。;非晶态W {dollar} sb {lcub} 50 {rcub} {dollar的总干涉函数I(K)和简化原子分布函数G {dollar} sb {lcub} rm I {rcub} {dollar}(r)从X射线衍射图获得} Fe {美元} sb {lcub} 50 {rcub} {美元}合金。两种功能均由W-W和W-Fe原子对主导。发现G {r} sb1 {dollar}(r)的第一最大值为r {dollar} sb1 {dollar} = 2.74A,接近晶体W中的原子间距离。为了研究Mo同等地取代W和Mn替代Fe的效果,W {dollar} sb {lcub} 50 {rcub} {dollar} Mn {dollar} sb {lcub} 50 {rcub},{dollar} Mo {dollar } sb {lcub} 50 {rcub} {dollar} Fe {dollar} sb {lcub} 50 {rcub} {dollar}和Mo {dollar} sb {lcub} 50 {rcub} {dollar} Mn {dollar} sb {lcub还研究了} 50 {rcub} {dollar}合金。对这四种合金的比较表明,它们的结构相似,表明Mo和Mn可以分别用作W和Fe的同晶型。 W {dollar} sb {lcub} 50 {rcub} {dollar} Fe {dollar} sb {lcub} 50 {rcub} {dollar}粉末在不同的时间段内机械合金化,主要对应于纳米晶体或非晶态结构在室温和最高1720 MPa(250 ksi)的压力下。对于直径为11mm且厚度为1.3mm的压块,获得了理论值的70%的最大密度。电子显微镜用于研究球磨对颗粒形态和颗粒间键合的影响。研磨100小时后,粉末颗粒的尺寸从W的12 {μ​​m}μm(美元)和Fe的5 {μm}μm(美元)减小到{sim}(μm)1的平均大小。 {dollar} mu {dollar} m。

著录项

  • 作者

    Yang, Enyao.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1993
  • 页码 182 p.
  • 总页数 182
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号