首页> 外文学位 >The combustion of individual particles of various coal types.
【24h】

The combustion of individual particles of various coal types.

机译:燃烧各种煤炭类型的单个颗粒。

获取原文
获取原文并翻译 | 示例

摘要

This modeling study characterizes the initial stages of pulverized fuel (p.f.) firing of various types of coal, at the level of individual particles. Noncondensible gas, tars, and soot, if present, from different coal types are distinguished by different evolution rates, elemental compositions, average molecular weights, and transport properties.; The combustion enthalpies, flame temperatures, and stoichiometric requirements of the envelope flames are based on thermochemical equilibrium among 12 species, including primary dissociation fragments. Fuel accumulation between the particle and flame is also accounted for. Tar condensation into soot is studied in two limits: (1) frozen secondary pyrolysis in which no soot formed, and (2) infinitely fast secondary pyrolysis in which tar condenses into soot instantly at the particle surface. The product of primary devolatilization are radically transformed by secondary pyrolysis after they are expelled into hot gases. Distributions of noncondensible gases from primary devolatilization are reduced to only 3 fuel species, H{dollar}sb2{dollar} and {dollar}rm Csb2Hsb2,{dollar} and CO, while tars are converted into soot. The model developed represents the limiting scenario of infinitely-fast secondary pyrolysis followed by combustion of gaseous fuels and soot in a flame sheet, either on or around the particle. Extensions also develop separate limiting behavior for instantaneous soot oxidation in envelope flames and for frozen soot oxidation chemistry. Comparisons among predicted and observed flame lifetimes and maximum flame standoffs select the most realistic modeling scenarios.; Soot is almost 1000 times more efficient than the host particle in radiating energy into the surroundings, and dissipates up to 90% of the radiation during the initial stages of combustion. Soot radiation cools flame temperatures by up to 400 K, reducing the differences among flame temperatures for diverse coal types in 8% O{dollar}sb2{dollar} to only 100 K around 2200 K. At such temperatures, water/gas shift equilibrium determines the distribution of combustion products, and the energy carried away by intermediates becomes negligible. For envelope flames around 100 {dollar}mu{dollar}m particles of all coal types, about 60% of the heat of combustion is fedback to the particle, and one-third is conducted or radiated into the surroundings. But for attached flames on smaller particles, more than 90% is retained by the particle. (Abstract shortened by UMI.)
机译:这项建模研究的特征是在单个颗粒的水平上燃烧各种类型的煤的粉状燃料(p.f.)的初期燃烧。不同煤种的不凝性气体,焦油和烟灰(如果存在)的区别在于不同的逸出速率,元素组成,平均分子量和运输性质。包络火焰的燃烧焓,火焰温度和化学计量要求基于12种物质之间的热化学平衡,包括主要的离解碎片。还考虑了颗粒和火焰之间的燃料积聚。研究了焦油凝结成烟灰的两个极限:(1)冻结的二次热解,其中没有烟灰形成;(2)无限快速的二次热解,其中,焦油立即在颗粒表面凝结成烟灰。一次脱挥发分的产物被排入热气体后,通过二次热解从根本上转化。来自一次脱挥发分的不凝性气体的分布减少到仅3种燃料,即H {dollar} sb2 {dollar}和{dolrmrm Csb2Hsb2,{dollar}和CO,而焦油则转化为烟灰。建立的模型代表了无限快的二次热解,然后在颗粒上或周围的火焰中燃烧气态燃料和烟灰的极限情况。扩展还为包络火焰中的瞬时烟尘氧化和冷冻烟尘氧化化学发展了单独的限制行为。在预测和观察到的火焰寿命与最大火焰间隔之间的比较选择了最现实的建模方案。在将能量辐射到周围环境中时,烟灰的效率几乎比主体颗粒高1000倍,并且在燃烧的初始阶段消散了多达90%的辐射。烟尘辐射可将火焰温度降低多达400 K,从而将8%O {dollar} sb2 {dollar}中各种煤类型的火焰温度差异降低到2200 K附近的仅100K。燃烧产物的分布以及由中间体带走的能量可以忽略不计。对于所有煤类型的大约100 {μm}美元颗粒的包络火焰,约60%的燃烧热被反馈到该颗粒,并且三分之一的热量被传导或辐射到周围。但是对于附着在较小颗粒上的火焰,超过90%的颗粒被保留。 (摘要由UMI缩短。)

著录项

  • 作者

    Lau, Chun Wai.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1993
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号