首页> 外文学位 >An artificial intelligence application of backpropagation neural networks to simulate accountants' assessments of internal control systems using COSO guidelines.
【24h】

An artificial intelligence application of backpropagation neural networks to simulate accountants' assessments of internal control systems using COSO guidelines.

机译:反向传播神经网络在人工智能中的应用,可使用COSO准则模拟会计师对内部控制系统的评估。

获取原文
获取原文并翻译 | 示例

摘要

The objective of this study was to explore a form of artificial intelligence, neural network modelling, to examine variables that are crucial to technological implementation in accounting settings. The experiment utilized an accounting framework, assessing internal controls under COSO guidelines.; The results of this experiment suggest that a neural network model can be developed such that the decision processes of external auditors in assessing internal controls can be reasonably modelled. A significant difference exists between the classification precision of network models (a) using one hidden layer as opposed to two hidden layers, (b) between models with differing configurations of neurons within the hidden layer(s) and (c) a regression model for certain conditions.; A study of the incorrect decisions made by a neural network indicates that while reliance on a network would result in making some incorrect decisions, the threat of over-relying on internal controls is not extremely high. By eliminating noise in the research instrument, a network can be modelled that will be able to predict a higher number of correct assessments than was possible with the full experimental model.; A sensitivity analysis revealed that none of the five COSO inputs individually has an extreme effect on the neural network's ability to make internal control assessments. Self assessments by auditors who rate themselves as experts reveals that their models have a higher prediction rate at assessing internal controls than does the network developed from responses of lower self-assessed experts. Analysis reveals that auditors are extremely conservative in their response, especially in assessing controls over compliance with rules and regulations. Neural networks that were developed using effectiveness of internal controls as an outcome measure, had higher accuracy predictions than networks developed using quality of internal controls as an outcome measure.; This research demonstrates the usefulness of applying a neural network paradigm in assessing the effectiveness of internal control systems.
机译:这项研究的目的是探索一种人工智能形式的神经网络建模,以检查对会计设置中的技术实施至关重要的变量。实验利用了会计框架,根据COSO准则评估了内部控制。该实验的结果表明,可以开发神经网络模型,以便可以合理地建模外部审计员在评估内部控制方面的决策过程。网络模型的分类精度之间存在显着差异(a)使用一个隐藏层而不是两个隐藏层,(b)在一个或多个隐藏层中具有不同神经元配置的模型之间,以及(c)用于一定条件下。;对神经网络做出的不正确决策的研究表明,尽管依赖网络会导致做出一些不正确的决策,但过度依赖内部控制的威胁并不是很高。通过消除研究仪器中的噪声,可以对网络进行建模,该网络将能够比完整的实验模型预测更多的正确评估。敏感性分析表明,五个COSO输入都不会单独影响神经网络进行内部控制评估的能力。自我评价为专家的审计师的自我评估表明,与较低自我评估专家的回应所建立的网络相比,他们的模型在评估内部控制方面的预测率更高。分析表明,审计师的反应极为保守,尤其是在评估对法规和规章遵守情况的控制方面。使用内部控制的有效性作为结果度量开发的神经网络比使用内部控制的质量作为结果度量开发的网络具有更高的准确性预测。这项研究证明了在评估内部控制系统的有效性中应用神经网络范式的有用性。

著录项

  • 作者

    O'Callaghan, Susanne.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Business Administration Accounting.; Artificial Intelligence.
  • 学位 Ph.D.
  • 年度 1994
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 财务管理、经济核算;人工智能理论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号