首页> 外文学位 >The design and control of a two-armed, cooperating, flexible-drivetrain robot system.
【24h】

The design and control of a two-armed, cooperating, flexible-drivetrain robot system.

机译:两臂协作的灵活传动系统机器人系统的设计和控制。

获取原文
获取原文并翻译 | 示例

摘要

Many tasks are difficult or impossible with "one-armed" robots; examples include manipulation/assembly involving long parts, and tasks requiring fine alignments or large torques. Robots with multiple-manipulator arms have the potential to do these tasks well, but only if both the manipulators and their controller are systematically designed for cooperation. This dissertation describes a design methodology and control techniques for achieving a two-armed robot system that can autonomously perform cooperative tasks in an unstructured environment. This dissertation also presents experimental results from key subsystems and of the entire robot so designed; these results validate the methodology and demonstrate the robot's capabilities.;To validate the methodology, the robot hardware and the control system have been designed concurrently, ensuring compatibility of critical properties. The hardware is specifically designed for cooperative control, incorporating the sensing and mechanical properties required. The manipulators have deliberately-exaggerated drivetrain flexibility to facilitate the study of its effects on robot cooperation. The control system is structured as a function-based, four-level hierarchy of joint, manipulator, object, and task levels, which is implemented on a multi-processor real-time computer. Each level in the hierarchy controls a different aspect of the robot's control, organizing the functions according to time-scale, and facilitating the abstraction of robotic services. The joint level handles drivetrain flexibility via joint-torque control. The manipulator level uses end-point sensing and nonlinear feedback to make each manipulator arm behave as a decoupled, multi-dimensional force/acceleration source (virtual actuator). The object level manages the object's behavior by the use of object-impedance control to achieve intimate cooperation between the two manipulators. The task level directs sequences of elemental actions to perform multistep tasks autonomously. Experimental results are presented for each layer of control: joint, manipulator, object, and task.;The task level's results demonstrate the robot system's ability to perform multi-step, cooperative tasks autonomously, such as the "two-handed" insertion of a long part into a deep hole and a cooperative assembly with a long, fragile object--a fluorescent light bulb.
机译:使用“单臂”机器人很难或不可能完成许多任务。示例包括涉及长零件的操纵/组装,以及需要精确对准或大扭矩的任务。带有多机械臂的机器人有潜力很好地完成这些任务,但前提是机械臂及其控制器都经过系统地设计以进行协作。本文介绍了一种实现在非结构化环境中可以自主执行协同任务的两臂机器人系统的设计方法和控制技术。本文还介绍了关键子系统和整个设计机器人的实验结果。这些结果验证了方法论并证明了机器人的功能。为了验证方法论,机器人硬件和控制系统已同时设计,以确保关键特性的兼容性。该硬件专为协同控制而设计,整合了所需的传感和机械性能。机械手故意夸大了传动系统的灵活性,以方便研究其对机器人合作的影响。控制系统的结构是关节,操纵器,对象和任务级别的基于功能的四级层次结构,该层次结构在多处理器实时计算机上实现。层次结构中的每个级别都控制机器人控制的不同方面,根据时间范围组织功能,并促进对机器人服务的抽象。关节水平通过关节扭矩控制来处理动力传动系统的灵活性。机械手级别使用端点感测和非线性反馈,以使每个机械手臂表现为分离的多维力/加速度源(虚拟致动器)。对象级通过使用对象阻抗控制来实现两个操纵器之间的紧密协作来管理对象的行为。任务级别指导基本操作序列自动执行多步骤任务。给出了每个控制层(关节,操纵器,对象和任务)的实验结果。;任务级别的结果证明了机器人系统能够自动执行多步协作任务的能力,例如“双手”插入机器人。它的一个很长的部分进入一个深孔,并且与一个长而易碎的物体(荧光灯灯泡)协作组装。

著录项

  • 作者

    Pfeffer, Lawrence E.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Systems science.;Computer science.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 1994
  • 页码 319 p.
  • 总页数 319
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:49:51

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号