首页> 外文学位 >Robust design and experimental optimization approaches for concurrent design
【24h】

Robust design and experimental optimization approaches for concurrent design

机译:并行设计的稳健设计和实验优化方法

获取原文
获取原文并翻译 | 示例

摘要

The increase in quality requirements demands efficient integration of design and manufacturing concerns. This thesis develops a robust design procedure and a novel experimental optimization approach for considering manufacturing tolerances (dimensional and geometric) from both design and manufacturing perspectives. Manufacturing capabilities prohibit the tight control of variations in geometry, dimensions and positions in system components. Two formulations are used where manufacturing tolerances are considered as: (i) control variables and (ii) noise variables beyond the designer's control. Results indicate the superiority of the developed procedure to detect a design region where system response is robust to sources of variations. Moreover, the procedure overcomes the shortcoming of on-line programming to deal with multi-variable problems and multi-level noisy space. The procedure is applied efficiently and successfully to typical product and process design.;A statistical optimization procedure is developed, implemented and tested to deal with situations where there is no explicit objective functions. The procedure results in a robust design by proper assignment of nominal and tolerance values. Standard matrix decomposition methods and orthogonal search allow obtaining functionally independent designs. The developed procedure and techniques change design specifications from 'acceptable within limits' to 'close-to-target value'. This technique has the advantage of reducing the tolerance optimization problem and minimizing manufacturing costs.;The concept of orthogonal arrays and experimental optimization is used to develop an algorithm for unconstrained and constrained discrete problems. The algorithm employs specially coded designs to form combinatoric search in one and two domains. As a search in one domain, the algorithm uses data from Coordinate Measuring Machines (CMMs) and evaluates the tolerance zones of engineering features such as straightness and roundness (2-Dimensional) and flatness, cylindricity and sphericity (3-Dimensional). The problem of least cost tolerance allocation and optimum process selection is formulated as a discrete optimization problem. The problem is viewed as a search in two domains: the first is tolerance allocation that satisfies the assembly functional requirement; the second is process-selection such that the production cost is minimal. This formulation is based on coupling an inner array (tolerance selection domain) and an outer array (process selection domain). The choice of different structures of orthogonal arrays has a tremendous impact on the resulting minimum production cost and optimum tolerances. Each orthogonal array can be represented by a search graph which can aid the designer in the initial assignment phase. The developed algorithm overcomes one major shortcoming of almost all existing search techniques namely the need for excessive number of function evaluations and provides near-to-global optimum consistently with high reliability.;Finally, the experimental design techniques are used to deal with the problem of linear and nonlinear tolerance analysis of mechanical assemblies. The principal goal was to find a substitute for the expensive Monte Carlo-based simulation technique. Results illustrate the successful application of different orthogonal arrays in yielding a comparable system moments in small finite number of experiments with a sample of 10,000 (linear assembly) and 1,000 (nonlinear assembly).;This dissertation surveys the literature and offers solutions to various design and manufacturing problems. In fact, it proposes unique tools and techniques to tackle problems such as robust product and process design, nominal and tolerance value assignment, form tolerance evaluation, discrete optimization and linear and nonlinear tolerance analysis.
机译:质量要求的提高要求设计和制造方面的有效整合。本文提出了一种健壮的设计程序和一种新颖的实验优化方法,从设计和制造的角度考虑了制造公差(尺寸和几何尺寸)。制造能力禁止严格控制系统组件中几何形状,尺寸和位置的变化。在考虑制造公差的情况下,使用两种公式:(i)控制变量和(ii)设计者无法控制的噪声变量。结果表明,所开发程序在系统区域对变化源具有鲁棒性的设计区域检测中具有优越性。而且,该程序克服了在线编程处理多变量问题和多级噪声空间的缺点。该程序有效且成功地应用于典型的产品和过程设计。;开发,实施和测试了统计优化程序,以处理没有明确目标功能的情况。通过正确分配名义值和公差值,该程序可实现稳健的设计。标准矩阵分解方法和正交搜索允许获得功能独立的设计。开发的程序和技术将设计规范从“可接受范围内”更改为“接近目标值”。该技术的优点是减少了公差优化问题,并最大程度地降低了制造成本。正交阵列和实验优化的概念被用于开发无约束和约束离散问题的算法。该算法采用特殊编码的设计在一个和两个域中形成组合搜索。作为在一个域中的搜索,该算法使用了来自坐标测量机(CMM)的数据,并评估了诸如直线度和圆度(二维)和平面度,圆柱度和球形度(三维)之类的工程特征的公差带。最小成本公差分配和最佳工艺选择的问题被表述为离散优化问题。该问题被视为在两个领域中的搜索:第一个是满足装配功能要求的公差分配;第二个是满足装配功能要求的公差分配。第二是工艺选择,以使生产成本最小。该表述基于内部阵列(公差选择域)和外部阵列(过程选择域)的耦合。正交阵列不同结构的选择对最终的最低生产成本和最佳公差产生巨大影响。每个正交阵列都可以由搜索图表示,这可以在初始分配阶段帮助设计人员。所开发的算法克服了几乎所有现有搜索技术的一个主要缺点,即需要过多的函数求值,并且始终如一地提供具有高可靠性的近全局最优。最后,通过实验设计技术来解决以下问题:机械装配的线性和非线性公差分析。主要目标是寻找替代昂贵的基于蒙特卡洛的仿真技术。结果表明,在有限的有限数量的实验中,以10,000个(线性装配)和1,000个(非线性装配)为样本,不同正交阵列成功地产生了可比的系统矩。;本论文对文献进行了调查,并为各种设计和解决方案提供了解决方案制造问题。实际上,它提出了独特的工具和技术来解决诸如稳健的产品和工艺设计,标称和公差值分配,形状公差评估,离散优化以及线性和非线性公差分析等问题。

著录项

  • 作者

    Gadallah, Mohamed Hassan.;

  • 作者单位

    McMaster University (Canada).;

  • 授予单位 McMaster University (Canada).;
  • 学科 Mechanical engineering.;Industrial engineering.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 272 p.
  • 总页数 272
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号