首页> 外文学位 >Analysis and design of a coaxial winding transformer interface for an electric vehicle charging system.
【24h】

Analysis and design of a coaxial winding transformer interface for an electric vehicle charging system.

机译:电动汽车充电系统同轴绕组变压器接口的分析和设计。

获取原文
获取原文并翻译 | 示例

摘要

The design and analysis of an inductively coupled EV charging system suitable for all power levels and all foreseeable infrastructure equipment is described. The separable coaxial winding transformer (CWT) is used as the inductive interface due to its unique structure and magnetic leakage field. The novel universal CWT-based EV charging system has helped remove two major barriers to widespread EV commercialization: user-unfriendly charger connection and lack of fast charging capability.;Exact, closed-form solutions for current density and magnetic field intensity of the CWT, including the effects of finitely thick conductors and multiple layers, are presented for the first time. From these field equations, exact normalized power and normalized energy are determined. Minimum power loss and minimum energy storage are conflicting requirements. To get more turns, minimum power loss is achieved by adding layers rather than segmenting a layer. Conversely, minimum energy storage is achieved by first segmenting a layer.;When skin effect dominates, ac resistance of the first layer is confirmed to be approximately that of a conductor of the same mean radius, one skin depth thick and carrying dc current. Similarly, the ac inductance is the same as a conductor of the same mean radius, one skin depth thick and carrying dc current, while also in the same layer position of the winding. Each layer has an optimal thickness for minimum power loss, which depends on the mean radius. However, there is no optimal thickness for the first layer of the inner winding when the mean radius is less than about five skin depths.;A single universal inductive coupler and EV charging system has been designed for both low and high power charging systems. Only two dimensions need standardization to allow all EV's to couple to all chargers, regardless of power rating: the center-to-center distance of the core windows and the diameter of the core window. The power electronics and thermal issues are important considerations in designing the system, but hold no unexpected surprises.
机译:描述了适用于所有功率水平和所有可预见基础设施设备的电感耦合EV充电系统的设计和分析。可分离的同轴绕组变压器(CWT)由于其独特的结构和漏磁场而被用作电感接口。新颖的基于CWT的通用EV充电系统帮助消除了广泛的EV商业化的两个主要障碍:用户不友好的充电器连接和缺乏快速充电的能力;精确,封闭形式的CWT电流密度和磁场强度解决方案,包括有限厚度导体和多层效应的首次展示。根据这些场方程,可以确定精确的归一化功率和归一化能量。最低功耗和最低能量存储是相互矛盾的要求。为了获得更多的匝数,可通过添加层而不是分段来实现最小的功率损耗。相反,通过首先分割一层可实现最小的能量存储。当趋肤效应起主导作用时,确认第一层的交流电阻约为相同平均半径,一个趋肤深度厚并带有直流电流的导体的交流电阻。类似地,交流电感与具有相同平均半径,一个趋肤深度厚且承载直流电流的导体相同,同时也在绕组的同一层位置。每层都有一个最佳厚度,以实现最小的功率损耗,具体取决于平均半径。但是,当平均半径小于大约五个趋肤深度时,内部绕组的第一层没有最佳厚度。已为低功率和高功率充电系统设计了单个通用感应耦合器和EV充电系统。不论额定功率如何,仅需标准化两个维度即可使所有EV都耦合至所有充电器:核心窗口的中心距和核心窗口的直径。电力电子和热学问题是设计系统的重要考虑因素,但并不令人意外。

著录项

  • 作者

    Klontz, Keith Wilson.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 207 p.
  • 总页数 207
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:49:44

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号