首页> 外文学位 >Mechanical adaptation of trabecular bone formation in vivo.
【24h】

Mechanical adaptation of trabecular bone formation in vivo.

机译:在体内对小梁骨形成的机械适应。

获取原文
获取原文并翻译 | 示例

摘要

The global objective of this dissertation was to quantify the adaptive response of newly-formed trabecular bone to a controlled in vivo mechanical stimulus. The hydraulic bone chamber (HBC) implant was introduced as a simple, yet versatile experimental model of trabecular bone formation and adaptation. The HBC was designed to be implanted into metaphyseal trabecular bone, allow repeated biopsies through a minimally invasive surgical procedure, and provide a substantial volume of extracted tissue for subsequent analysis. The unique feature of this model was its ability to pressurize an internal piston and thereby apply a controlled compressive force to a developing core of trabecular bone within the chamber. This feature was utilized to test the hypothesis that the cellular activity, trabecular microstructure, and mechanical properties of newly-formed trabecular bone would be altered by a daily intermittent compressive mechanical load.;As a whole, this dissertation demonstrated that trabecular bone formation is highly sensitive to in vivo mechanical loading. The adaptive mechanisms included thickening and connecting of the trabecular microstructure which was associated with a 600% increase in the compressive apparent modulus of HBC biopsies. Within the 12 week loading period, a concurrent increase in trabecular-level modulus, calculated using digital image-based microstructural finite element modeling, was not detected.;Regardless of loading conditions, the average HBC tissue trabecular-level modulus remained less than 1.0 GPa, significantly lower than that measured for mature population trabecular bone from the same region (3.0 GPa). Cellular activity within HBC tissue was also influenced by the introduction of an in vivo mechanical stimulus. The percentage of trabecular surfaces covered by osteoblast cells expressing the matrix precursor type I procollagen was significantly increased after only a few days of mechanical loading.;In conclusion, a new in vivo experimental model was developed and applied to evaluate cellular and microstructural mechanisms of trabecular bone formation and adaptation. An improved understanding of the relationship between trabecular bone structure and its functional mechanical environment has relevance to the treatment of a variety of clinical conditions including skeletal development disorders, bone grafting, fracture healing, total joint replacement, and osteoarthritis.
机译:本文的总体目标是量化新形成的小梁骨对受控的体内机械刺激的适应性反应。引入液压骨腔(HBC)植入物是一种简单而通用的小梁骨形成和适应性实验模型。 HBC被设计为植入到干phy端小梁骨中,可以通过微创手术程序进行重复活检,并提供大量的提取组织用于后续分析。该模型的独特之处在于它能够对内部活塞加压,从而对腔室内小梁骨的发育中的核心施加受控的压缩力。利用这一特征检验了以下假设:每天断续的压缩机械载荷会改变新形成的小梁骨的细胞活性,小梁微结构和力学性能。总体而言,本论文证明了小梁骨的形成是高度重要的。对体内机械负荷敏感。适应性机制包括小梁微观结构的增厚和连接,这与HBC活检的压缩表观模量增加600%有关。在12周的加载期间内,未检测到使用基于数字图像的微结构有限元建模计算的骨小梁水平模量的同时增加。;无论加载条件如何,HBC组织的平均骨小梁水平模量均保持小于1.0 GPa ,远低于同一地区(3.0 GPa)的成熟人群小梁骨的测量值。 HBC组织内的细胞活性也受到体内机械刺激的影响。机械加载仅几天后,表达基质前体I型前胶原的成骨细胞所覆盖的小梁表面的百分比就显着增加。总之,开发了一种新的体内实验模型并将其用于评估小梁的细胞和微结构机制骨骼的形成和适应。对小梁骨结构及其功能性机械环境之间关系的更好理解与各种临床状况的治疗有关,包括骨骼发育障碍,植骨,骨折愈合,全关节置换和骨关节炎。

著录项

  • 作者

    Guldberg, Robert Erling.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Biomedical.;Engineering Mechanical.;Health Sciences Medicine and Surgery.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号