首页> 外文学位 >Basic MOS studies for silicon carbide power devices.
【24h】

Basic MOS studies for silicon carbide power devices.

机译:碳化硅功率器件的基础MOS研究。

获取原文
获取原文并翻译 | 示例

摘要

This thesis focuses on basic MOS research on SiC and the design of high voltage MOS devices on SiC with high field stressing of the gate oxide as the main criterion. These are identified as the areas where the most contributions could be made to the field of silicon carbide power MOS switching devices. Electrical characterization of the SiC/SiO{dollar}sb2{dollar} interface is the first topic developed in this thesis and a variety of MOS characterization techniques are applied to silicon carbide and compared with each other. A baseline gate oxidation process is developed for 6H- and 4H-SiC. The optimization efforts for this thermal oxidation step result in the lowest effective fixed charge (8.5 {dollar}times{dollar} 10{dollar}sp{lcub}11{rcub}{dollar} cm{dollar}sp{lcub}-2{rcub}{dollar}) and midgap interface state density (1.5 {dollar}times{dollar} 10{dollar}sp{lcub}11{rcub}{dollar} cm{dollar}sp{lcub}-2{rcub}{dollar}eV{dollar}sp{lcub}-1{rcub}{dollar}) reported so far on p-type 6H-SiC. Several effects of doping, substrate orientation, and processing are studied in this research. The UMOS structure is identified by other groups as the power MOSFET structure of choice for silicon carbide. MOS studies done here indicate inferior properties for the gate oxide in that structure, and simulations identify a severe enhancement in high-field stressing in the gate oxides of SiC UMOSFETs. A Double-Implant MOS (DIMOS) process is proposed to realize a planar structure that minimizes these drawbacks. The first SiC DIMOS transistors are fabricated and demonstrated in 6H-SiC as the final part of this thesis. These transistors attain breakdown voltages of over 750 V, which is about a factor of three improvement over current SiC UMOS transistor results.
机译:本文重点研究了基于SiC的MOS的基础研究,并以以栅氧化物的高场应力为主要标准的基于SiC的高压MOS器件设计。这些被确定为对碳化硅功率MOS开关器件领域贡献最大的领域。 SiC / SiO {sb2 {dollar}界面的电特性表征是本文研究的第一个主题,各种MOS表征技术已应用于碳化硅并进行了比较。针对6H-和4H-SiC开发了基准栅极氧化工艺。此热氧化步骤的优化工作导致最低的有效固定电荷(8.5 {dollar} times {dollar} 10 {dollar} sp {lcub} 11 {rcub} {dollar} cm {dollar} sp {lcub} -2 { rcub} {dollar})和中间间隙界面状态密度(1.5 {dollar} times {dollar} 10 {dollar} sp {lcub} 11 {rcub} {dollar} cm {dollar} sp {lcub} -2 {rcub} {dollar } eV {dollar} sp {lcub} -1 {rcub} {dollar})迄今已报道了p型6H-SiC。在这项研究中研究了掺杂,衬底取向和工艺的几种影响。 UMOS结构被其他组织确定为碳化硅的首选功率MOSFET结构。此处进行的MOS研究表明,该结构中的栅极氧化物的性能较差,并且仿真发现SiC UMOSFET栅极氧化物中的高场应力会大大增强。为了实现使这些缺点最小化的平面结构,提出了双注入MOS(DIMOS)工艺。作为本文的最后部分,制造了第一批SiC DIMOS晶体管并在6H-SiC中进行了演示。这些晶体管的击穿电压超过750 V,大约是目前SiC UMOS晶体管结果的三倍。

著录项

  • 作者

    Shenoy, Jayarama Narayan.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号