首页> 外文学位 >Structure and function in archaeal RNase P and the S(MK) box riboswitch.
【24h】

Structure and function in archaeal RNase P and the S(MK) box riboswitch.

机译:在古细菌RNase P和S(MK)盒核糖开关中的结构和功能。

获取原文
获取原文并翻译 | 示例

摘要

This work reports the study of relationships between structure and function in two RNA-based elements of life: archaeal RNase P and the bacterial S MK box riboswitch.;RNase P is an essential enzyme present in all three domains of life, responsible for cleaving the 5' leader sequence of precursor tRNAs, yielding mature tRNAs. The most well characterized RNase P is the bacterial version, which was shown to be an RNA enzyme, or ribozyme. Although the RNase P RNA (RPR) is the catalytic moiety, the enzyme is also a ribonucleoprotein, containing a small RNase P protein (RPP) subunit that binds to the large RNA and accounts for ∼10% of the enzyme's total mass. The RPR is catalytically active in vitro under high salt conditions, but requires the RPP for activity in vivo.;RNase P from eukaryotes is less well characterized. Its RPR is homologous to the bacterial RPR, yet no eukaryal protein has been found to share marked sequence similarity with the single bacterial RPR. Eukaryal RNase P contains at least nine protein subunits that account for ∼70% the mass of the intact enzyme and whose roles in the enzyme's function remain unknown. Remarkably, the eukaryal RPR has only nominal enzymatic activity. We hypothesize that evolution has shifted structural or catalytic responsibilities from the RPR to the RPPs in the case of the eukaryal enzyme as compared to its bacterial counterpart.;A subset of the eukaryal RPPs shares homology with four archaeal RPPs (POP5, RPP21, RPP29, and RPP30), which have been shown to enhance the activity of a cognate RPR in an in vitro reconstitution assay. Based on this observation, we adopted archaeal RNase P as a model system, with the ultimate goal of gaining insight into the complicated and poorly-understood eukaryal version of the enzyme. Archaeal RNase P is an attractive target for structural studies due to the demonstrated in vitro reconstitution, the limited number of its RPPs, the smaller size of the RPPs, and the robust solution behavior of components derived from thermophilic sources.;Work detailed here focuses primarily on the structure and interactions of archaeal RPP POP5 from the hyperthermophilic archaeon Pyrococcus furiosus. Determination of its crystal structure revealed an unexpected similarity to the bacterial RPP in spite of their different evolutionary origins. Subsequent study identified the surface that POP5 uses to interact with its partner RPP30. Finally, work was initiated to determine the structure of POP5 and RPP30 assembled with a catalytically active domain of their associated RPR.;Work performed in parallel characterized conformational changes in the SMK box riboswitch from the bacterium Enterococcus faecalis , an RNA regulatory element capable of modulating gene expression in response to fluctuating cellular concentrations of the metabolite S-adenosylmethionine. Riboswitches typically comprise two domains that communicate with each another: one for binding of the effector molecule and one for regulation of the associated gene's expression. The S MK box is of particular utility for structural characterization because its effector-binding and regulatory domains are coincident. This property allowed us to perform the first atomic-level characterization of a riboswitch interconverting between mutually exclusive, biologically pertinent conformations in response to its effector molecule.
机译:这项工作报告了在两个基于RNA的生活要素中的结构与功能之间关系的研究:古细菌RNase P和细菌S MK box核糖开关。RNase P是存在于生活的所有三个域中的必需酶,负责切割前体tRNA的5'前导序列,产生成熟的tRNA。表征最充分的RNase P是细菌版本,被证明是RNA酶或核酶。尽管RNase P RNA(RPR)是催化部分,但该酶还是核糖核蛋白,包含一个与大RNA结合的小的RNase P蛋白(RPP)亚基,约占酶总质量的10%。 RPR在高盐条件下在体外具有催化活性,但需要RPP才能在体内具有活性。真核生物的RNase P的表征较差。它的RPR与细菌RPR同源,但尚未发现真核蛋白与单个细菌RPR具有明显的序列相似性。真核RNase P包含至少9个蛋白质亚基,约占完整酶质量的70%,其在酶功能中的作用尚不清楚。值得注意的是,真核RPR仅具有名义上的酶活性。我们假设与真细菌相比,真核生物的进化已将RPR的结构或催化作用转移到RPPs上;真核RPPs的一个子集与四个古RPPs(POP5,RPP21,RPP29,和RPP30),在体外重构分析中已显示可增强相关RPR的活性。基于此观察结果,我们采用古细菌RNase P作为模型系统,其最终目的是深入了解这种酶的复杂且难以理解的真核生物形式。由于证明了体外重组,RPP的数量有限,RPP的尺寸较小以及嗜热来源的组分的稳固溶液行为,古细菌RNase P是结构研究的一个有吸引力的目标。嗜热古细菌火球菌的古细菌RPP POP5的结构和相互作用的研究。确定其晶体结构揭示了与细菌RPP出乎意料的相似性,尽管它们的进化起源不同。随后的研究确定了POP5用于与其伙伴RPP30交互的表面。最后,开始确定与它们的相关RPR的催化活性域组装在一起的POP5和RPP30的结构的工作;平行进行的工作表征了粪肠球菌(Enterococcus faecalis)SMK盒核糖开关的构象变化,该细菌是一种能够调节的RNA调节元件。基因表达响应于代谢产物S-腺苷甲硫氨酸的细胞浓度波动。核糖开关通常包含彼此连通的两个结构域:一个用于结合效应子分子,另一个用于调节相关基因的表达。 S MK盒对结构表征特别有用,因为其效应子结合域和调节域是重合的。这一特性使我们能够对核糖开关进行第一个原子级表征,以响应其效应分子在相互排斥的生物学相关构象之间相互转化。

著录项

  • 作者

    Wilson, Ross Crawford.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号