首页> 外文学位 >Frequency domain system identification of helicopter rotor dynamics incorporating models with time periodic coefficients.
【24h】

Frequency domain system identification of helicopter rotor dynamics incorporating models with time periodic coefficients.

机译:直升机旋翼动力学的频域系统识别结合了具有时间周期系数的模型。

获取原文
获取原文并翻译 | 示例

摘要

One of the most prominent features of helicopter rotor dynamics in forward flight is the periodic coefficients in the equations of motion introduced by the rotor rotation. The frequency response characteristics of such a linear time periodic system exhibits sideband behavior, which is not the case for linear time invariant systems. Therefore, a frequency domain identification methodology for linear systems with time periodic coefficients was developed, because the linear time invariant theory cannot account for sideband behavior.;The modulated complex Fourier series was introduced to eliminate the smearing effect of Fourier series expansions of exponentially modulated periodic signals. A system identification theory was then developed using modulated complex Fourier series expansion. Correlation and spectral density functions were derived using the modulated complex Fourier series expansion for linear time periodic systems. Expressions of the identified harmonic transfer function were then formulated using the spectral density functions both with and without additive noise processes at input and/or output. A procedure was developed to identify parameters of a model to match the frequency response characteristics between measured and estimated harmonic transfer functions by minimizing an objective function defined in terms of the trace of the squared frequency response error matrix. Feasibility was demonstrated by the identification of the harmonic transfer function and parameters for helicopter rigid blade flapping dynamics in forward flight. This technique is envisioned to satisfy the needs of system identification in the rotating frame, especially in the context of individual blade control. The technique was applied to the coupled flap-lag-inflow dynamics of a rigid blade excited by an active pitch link. The linear time periodic technique results were compared with the linear time invariant technique results. Also, the effect of noise processes and initial parameter guess on the identification procedure were investigated. To study the effect of elastic modes, a rigid blade with a trailing edge flap excited by a smart actuator was selected and system parameters were successfully identified, but with some expense of computational storage and time.;Conclusively, the linear time periodic technique substantially improved the identified parameter accuracy compared to the linear time invariant technique. Also, the linear time periodic technique was robust to noises and initial guess of parameters. However, an elastic mode of higher frequency relative to the system pumping frequency tends to increase the computer storage requirement and computing time.
机译:直升飞机中直升机旋翼动力学的最显着特征之一是旋翼旋转引入的运动方程中的周期系数。这种线性时间周期系统的频率响应特性表现出边带行为,而线性时间不变系统则不是这种情况。因此,由于线性时不变理论无法解释边带行为,因此开发了一种具有时间周期系数的线性系统的频域识别方法。;引入了调制复傅立叶级数以消除指数调制周期的傅立叶级数展开的拖尾效应信号。然后,使用调制复傅立叶级数展开来发展系统识别理论。使用线性时间周期系统的调制复傅立叶级数展开来导出相关和频谱密度函数。然后,使用频谱密度函数在输入和/或输出处有或没有加性噪声过程的情况下,确定所识别的谐波传递函数的表达式。通过最小化根据平方的频率响应误差矩阵的轨迹定义的目标函数,开发了一种程序来识别模型参数,以使其与实测和估计的谐波传递函数之间的频率响应特性相匹配。通过确定谐波传递函数和前向飞行中直升机刚性叶片拍打动力学的参数,证明了可行性。可以预想该技术可以满足旋转框架中系统识别的需求,尤其是在单个叶片控制的情况下。该技术被应用于由主动变桨连杆激发的刚性叶片的耦合襟翼滞后流入动力学。将线性时间周期技术的结果与线性时间不变技术的结果进行了比较。此外,研究了噪声过程和初始参数猜测对识别过程的影响。为了研究弹性模态的影响,选择了具有智能执行器激励的后缘襟翼的刚性叶片,并成功地识别了系统参数,但付出了一定的计算存储和时间开销。最后,线性时间周期技术得到了显着改进与线性时不变技术相比,确定的参数精度更高。而且,线性时间周期技术对噪声和参数的初始猜测具有鲁棒性。但是,相对于系统泵浦频率而言,较高频率的弹性模式会增加计算机的存储需求和计算时间。

著录项

  • 作者

    Hwang, Sunghwan.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 343 p.
  • 总页数 343
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号