首页> 外文学位 >Longitudinal control of automated commercial heavy vehicles.
【24h】

Longitudinal control of automated commercial heavy vehicles.

机译:自动化商用重型车辆的纵向控制。

获取原文
获取原文并翻译 | 示例

摘要

Advanced Vehicle Control System (AVCS) design is an integral part of the rapidly growing national and international initiatives on Intelligent Transportation Systems (ITS) and Automated Highway Systems (AHS), which aim at significantly increasing the traffic capacity of existing highways through vehicle and roadway automation. In the past few years, AVCS research and development has been primarily focused on passenger vehicles, while commercial heavy vehicles (CHVs) such as heavy-duty freight trucks and commuter buses have been largely ignored.; We present adaptive nonlinear schemes for longitudinal control of CHVs. One of the most visible proposed strategies for highway automation is to group automatically controlled vehicles in platoons, i.e., tightly spaced vehicle group formations. An important control objective is string stability, which ensures that errors decrease as they propagate upstream through the platoon. It is well known that string stability requires intervehicle communication if a constant spacing policy is adopted. When vehicles operate autonomously, string stability can be achieved if speed-dependent spacing with constant time headway is used. This, however, results in larger steady-state spacings, which increase the platoon length hence decreasing traffic throughput. This disadvantage is even more pronounced in CHVs, which require larger time headways due to their low actuation-to-weight ratio.; We develop two new nonlinear spacing policies, variable time headway and variable separation error gain, which all but eliminate this undesirable side effect. The first policy significantly reduces the transient errors and allows us to use much smaller spacings in autonomous platoon operation, while the second one results in smoother and more robust longitudinal control. Furthermore, the two can be combined to yield even better robustness with respect to maneuvers. In order to achieve robustness with respect to significant actuator delays (present in existing CHVs) as well, we design a new controller using the backstepping methodology. A predictor is also added to the control loop for control smoothness enhancement.
机译:先进的车辆控制系统(AVCS)设计是智能交通系统(ITS)和自动公路系统(AHS)迅速发展的国内和国际计划中不可或缺的一部分,该计划旨在通过车辆和道路显着提高现有公路的通行能力自动化。在过去的几年中,AVCS的研究主要集中在乘用车上,而商用重型车辆(CHV),例如重型货车和通勤巴士,则基本上被忽略了。我们提出了CHV的纵向控制的自适应非线性方案。提出的高速公路自动化策略中最明显的策略之一是将自动控制的车辆编排成排,即紧密排列的车辆编队。一个重要的控制目标是琴弦稳定性,它可以确保误差在通过排上游传播时减少。众所周知,如果采用恒定间隔策略,则字符串稳定性需要车辆之间的通信。当车辆自主运行时,如果使用具有恒定时距的取决于速度的间距,则可以实现弦的稳定性。然而,这导致较大的稳态间隔,这增加了排的长度,从而降低了交通吞吐量。这种缺点在CHV中尤为明显,由于它们的致动重量比低,因此需要更长的时间。我们开发了两个新的非线性间距策略,可变的时程和可变的分离误差增益,它们几乎消除了这种不良的副作用。第一个策略显着减少了瞬态误差,并允许我们在自主排操作中使用更小的间距,而第二个策略则使纵向控制更平滑,更可靠。此外,可以将两者结合起来以产生相对于操纵更好的鲁棒性。为了在重大的执行器延迟(现有CHV中也存在)方面实现鲁棒性,我们使用反推方法设计了一种新的控制器。预测变量也添加到控制回路中,以增强控制平滑度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号