首页> 外文学位 >Low voltage, low power CMOS analog circuit design techniques for mobile, portable VLSI applications.
【24h】

Low voltage, low power CMOS analog circuit design techniques for mobile, portable VLSI applications.

机译:适用于移动,便携式VLSI应用的低电压,低功耗CMOS模拟电路设计技术。

获取原文
获取原文并翻译 | 示例

摘要

In the past decade, CMOS technology has played a major role in the rapid advancement and the increased integration of VLSI systems. CMOS devices feature high input impedance, extremely low offset switches, high packing density, low switching power consumption, and most importantly, they are easily scaled. With the reduction of the device minimum feature size, in order to prevent the transistor from breakdown because of the higher electrical field across the gate oxide and to ensure its reliability, the power supply voltage is necessary to be reduced.; With the reduction of the device minimum feature size, more and more transistors can be fabricated into a single chip. Nevertheless, the large amount of circuits integrated in a chip result in huge power consumption. Decrease of the supply voltage can not only ensure the device reliability, but also reduce power consumption in a significant amount. Furthermore, portable/mobile electronic equipments have become the trends of the present and future market demands. Low power supplies are the requirements of the portable/mobile electronic products.; In this dissertation, we focus on the low-voltage, low-power CMOS circuit design. Each circuit either features a rail-to-rail common-mode input voltage and/or consumes very low power. These circuits target applications in mobile telecommunications (rail-to-rail strong-inversion circuits) and in (portable) medical applications (low-power weak-inversion circuits). Three CMOS low-voltage rail-to-rail V-I converters are introduced. In each of the rail-to-rail V-I converters, an N-type V-I converter cell is connected in parallel with its P-type counterpart to achieve common-mode rail-to-rail operation. Based on the same approach for the rail-to-rail V-I converter, a rail-to-rail multiplier and a rail-to-rail input stage of a Differential Difference Amplifier (DDA)) are also designed accordingly. The rail-to-rail V-I converter and multiplier can be used as a basic building block to construct rail-to-rail analog computational circuits, and DDA-based analog circuits can provide a competitive design choice to Op-Amp-based circuits.; Through the use of the rail-to-rail V-I converter, a low-voltage 5th-order elliptic low-pass GM-C filter is designed. Because of the rail-to-rail OTAs inside, the resultant filter also has a rail-to-rail common-mode input voltage. This low-pass filter is designed for the application in baseband mobile/wireless communication. A V-I converter and a multiplier structures, which can work in either the weak-inversion or the strong-inversion saturation region, are described. By tuning the resistance value inside, the same circuit can work in both of these two regions. The weak-inversion V-I converter is applied into the design of a micropower weak-inversion GM-C filter. Because it is working in the weak-inversion region and its output current is in the {dollar}nA{dollar} level, only small capacitance is needed. Thus, a single-chip solution for a very low frequency filter is feasible. The cutoff frequencies of two weak-inversion low-pass filters cover the entire range of speech, so they are suitable for speech signal processing and medical hearing applications, such as integrated speech systems for hearing aids.; A low-voltage weak-inversion Variable Gain Amplifier (VGA) is described. The (VGA) circuit is basically comprised by an exponential converter, a four-quadrant analog multiplier, and an Operational Current Amplifier. Its applications are on the speech, audio signal processing and (portable) medical systems. Results are presented for all of these circuits.
机译:在过去的十年中,CMOS技术在VLSI系统的快速发展和日益集成中发挥了重要作用。 CMOS器件具有高输入阻抗,极低失调的开关,高封装密度,低开关功耗等特点,最重要的是,它们易于缩放。随着器件最小特征尺寸的减小,为了防止晶体管由于跨栅氧化物的较高电场而击穿并确保其可靠性,必须降低电源电压。随着器件最小特征尺寸的减小,越来越多的晶体管可以被制造到单个芯片中。然而,芯片中集成的大量电路导致巨大的功耗。降低电源电压不仅可以确保设备的可靠性,而且可以大大降低功耗。此外,便携式/移动电子设备已经成为当前和未来市场需求的趋势。低功耗是便携式/移动电子产品的要求。本文主要研究低电压,低功耗CMOS电路的设计。每个电路具有轨到轨共模输入电压和/或消耗非常低的功率。这些电路面向移动电信(轨到轨强反向电路)和(便携式)医疗应用(低功率弱反向电路)中的应用。推出了三个CMOS低压轨到轨V-I转换器。在每个轨到轨V-I转换器中,一个N型V-I转换器单元与其P型对应单元并联连接,以实现共模轨到轨操作。基于用于轨到轨V-I转换器的相同方法,还相应地设计了差分差分放大器(DDA)的轨到轨乘法器和轨到轨输入级。轨到轨V-I转换器和乘法器可以用作构建轨到轨模拟计算电路的基本构件,基于DDA的模拟电路可以为基于Op-Amp的电路提供竞争性的设计选择。通过使用轨到轨V-I转换器,设计了低压5阶椭圆低通GM-C滤波器。由于内部存在轨到轨OTA,因此所得滤波器也具有轨到轨共模输入电压。该低通滤波器专为基带移动/无线通信中的应用而设计。描述了可以在弱反相或强反相饱和区域中工作的V-I转换器和乘法器结构。通过调节内部的电阻值,同一电路可以在这两个区域中工作。弱反相V-I转换器被用于微功耗弱反相GM-C滤波器的设计中。由于它工作在弱反相区域,并且其输出电流处于{nA} nA {dollar}级别,因此只需要很小的电容。因此,用于极低频滤波器的单芯片解决方案是可行的。两个弱反相低通滤波器的截止频率覆盖了整个语音范围,因此它们适用于语音信号处理和医学听力应用,例如用于助听器的集成语音系统。描述了一种低压弱反相可变增益放大器(VGA)。 (VGA)电路基本上由一个指数转换器,一个四象限模拟乘法器和一个运算电流放大器组成。它的应用在语音,音频信号处理和(便携式)医疗系统上。给出了所有这些电路的结果。

著录项

  • 作者

    Hung, Chung-Chih.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Electronics and Electrical.; Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号