首页> 外文学位 >Characterization and adhesion measurement of ceramic-coated nickel and titanium alloys.
【24h】

Characterization and adhesion measurement of ceramic-coated nickel and titanium alloys.

机译:陶瓷涂层镍和钛合金的表征和附着力测量。

获取原文
获取原文并翻译 | 示例

摘要

Chemically inert ceramic coatings are currently being investigated to extend the lifetime of metallic components operating in severe environments. As part of this effort, the characterization and adhesion measurement of zirconium nitride and silicon carbide coatings deposited on two nickel and one titanium alloys were conducted.; Polycrystalline ZrN and amorphous {dollar}rm Sisb{lcub}0.57{rcub}Csb{lcub}0.43{rcub}{dollar} coatings were deposited by cathodic arc evaporation and by PACVD, respectively, on Incoloy 825 (Inc.), Hastelloy C22 (Hast.) and Titanium Grade 12 (Ti.) metal substrates. Analysis of the ZrN coatings by scanning electron microscopy and Auger electron spectroscopy (AES) revealed the presence of 1-8 {dollar}mu{dollar}m diameter macroparticles composed of zirconium metal. Residual stress analyses were performed on the ZrN coatings via XRD using the sin{dollar}sp2 Psi{dollar}, method. Compressive stresses of 4.06 GPa, 3.88 GPa and 2.69 GPa were found in the ZrN coatings deposited on Inc., Hast. and Ti. substrates, respectively. Residual stresses in the {dollar}rm Sisb{lcub}0.57{rcub}Csb{lcub}0.43{rcub}{dollar} coatings were estimated from reports in the literature. Nanoindentation testing was employed to assess the Young's modulus and hardness of the coatings. The Young's modulus and hardness for the ZrN coatings were 458 GPa and 27.65 GPa, respectively, while the corresponding values for the {dollar}rm Sisb{lcub}0.57{rcub}Csb{lcub}0.43{rcub}{dollar} coatings were 212.15 GPa and 21.97 GPa. X-ray photoelectron spectroscopy was employed to measure the coating composition. The ZrN coatings were composed of 58.41% Zr and 41.59% N, measured in atomic concentration. The composition of the {dollar}rm Sisb{lcub}0.57{rcub}Csb{lcub}0.43{rcub}{dollar} coatings was 57.29 at.% Si and 42.18 at.% C.; Studies of the interfacial chemistry via Auger electron spectroscopy and transmission electron microscopy revealed chemically abrupt interfaces. In addition, there was good compositional uniformity throughout the thickness of both the ZrN and {dollar}rm Sisb{lcub}0.57{rcub}Csb{lcub}0.43{rcub}{dollar} coatings.; Scratch tests were employed to assess the critical load for interfacial failure and fracture mechanisms for the various coating systems. Critical loads, characterized by continuous delamination of the coating, occurred at 41.2, 44.1 and 29.4 N for ZrN deposited on Hast. C22, Inc. 825 and Ti. 12, respectively. Interfacial failure of the {dollar}rm Sisb{lcub}0.57{rcub}Csb{lcub}0.43{rcub}{dollar}-coated metallic substrates was dominated by brittle fracture of the {dollar}rm Sisb{lcub}0.57{rcub}Csb{lcub}0.43{rcub}{dollar} coating. Critical loads of 2.9, 3.9 and 6.8 N were obtained for {dollar}rm Sisb{lcub}0.57{rcub}Csb{lcub}0.43{rcub}{dollar} deposited on Inc. 825, Hast. C22 and Ti. 12, respectively. Work of adhesion values were calculated from two well known models, namely, the Bull-Rickerby and Laugier, and from a model which incorporates elastic-plastic indentation. The ranking of the adhesion for the coating-metal substrate combinations is (from best to worst): ZrN/Inc. 825, ZrN/Hast. C22, ZrN/Ti, {dollar}rm Sisb{lcub}0.57{rcub}Csb{lcub}0.43{rcub}{dollar}/Ti, {dollar}rm Sisb{lcub}0.57{rcub}Csb{lcub}0.43{rcub}{dollar}/Hast. C22 and {dollar}rm Sisb{lcub}0.57{rcub}Csb{lcub}0.43{rcub}{dollar}/Inc. 825.; The plate impact spallation technique was also employed to investigate the interfacial spallation strength of ZrN and {dollar}rm Sisb{lcub}0.57{rcub}Csb{lcub}0.43{rcub}{dollar} ceramic coatings to nickel- and titanium-based alloys. Time restrictions with the equipment permitted testing of only a few samples. Therefore, the data obtained was qualitative in nature. In most cases, spallation occurred in the metal substrates and not at the interface as intended. However, in all cases where metal spallation occurred, the ZrN coatings remained adherent to the metal. For the {dollar}rm Sisb{lcub}
机译:目前正在研究化学惰性的陶瓷涂层,以延长在恶劣环境下运行的金属部件的寿命。作为这项工作的一部分,对沉积在两种镍和一种钛合金上的氮化锆和碳化硅涂层进行了表征和附着力测量。通过阴极电弧蒸发和PACVD将多晶ZrN和非晶{rm} Sisb {lcub} 0.57 {rcub} Csb {lcub} 0.43 {rcub} {美元}涂层分别沉积在Incoloy 825(Inc。),Hastelloy C22上(Hast。)和12级钛(Ti。)金属基底。通过扫描电子显微镜和俄歇电子能谱法(AES)对ZrN涂层的分析表明存在直径为1-8 {的由锆金属组成的mu的尺寸。使用sin {dollar} sp2 Psi {dollar}方法通过XRD对ZrN涂层进行残余应力分析。在Hast公司的ZrN涂层中发现4.06 GPa,3.88 GPa和2.69 GPa的压缩应力。和钛。基板。从文献报道估计了{rm} Sisb {lcub} 0.57 {rcub} Csb {lcub} 0.43 {rcub} {dollar}涂层中的残余应力。纳米压痕测试用于评估涂层的杨氏模量和硬度。 ZrN涂层的杨氏模量和硬度分别为458 GPa和27.65 GPa,而{rm} rm Sisb {lcub} 0.57 {rcub} Csb {lcub} 0.43 {rcub} {dollar}涂层的相应值为212.15 GPa和21.97 GPa。 X射线光电子能谱法用于测量涂层组成。以原子浓度测量,ZrN涂层由58.41%的Zr和41.59%的N组成。 {rm} Sisb {lcub} 0.57 {rcub} Csb {lcub} 0.43 {rcub} {dollar}涂层的组成为:Si为57.29原子%,C为42.18原子%。通过俄歇电子能谱和透射电子显微镜对界面化学的研究揭示了化学突变的界面。另外,在ZrN和{rm} Sisb {lcub} 0.57 {rcub} Csb {lcub} 0.43 {rcub} {dollar}涂层的整个厚度上都具有良好的组成均匀性。划痕试验用于评估各种涂层系统的界面破坏和断裂机理的临界载荷。以Hast沉积的ZrN为41.2、44.1和29.4 N时,出现了以涂层连续分层为特征的临界载荷。 C22,Inc. 825和Ti。 12,分别。 {美元} rm Sisb {lcub} 0.57 {rcub}的脆性断裂占主导地位,{美元} rm Sisb {lcub} 0.57 {rcub} Csb {lcub} 0.43 {rcub} {美元}的金属基底的界面破坏占主导地位。 Csb {lcub} 0.43 {rcub} {dollar}涂层。沉积在Hast Inc. 825上的{rm} Sisb {lcub} 0.57 {rcub} Csb {lcub} 0.43 {rcub} {dollar}的临界载荷为2.9、3.9和6.8N。 C22和Ti。 12,分别。粘附力的功是根据两个众所周知的模型(即Bull-Rickerby和Laugier)以及包含弹塑性压痕的模型计算的。涂层金属基材组合的粘附力等级为(从最佳到最差):ZrN / Inc。 825,ZrN / Hast。 C22,ZrN / Ti,{rm} Sisb {lcub} 0.57 {rcub} Csb {lcub} 0.43 {rcub} {dollar} / Ti,{rm} Sisb {lcub} 0.57 {rcub} Csb {lcub} 0.43 { rcub} {dollar} / Hast。 C22和{dol} rm Sisb {lcub} 0.57 {rcub} Csb {lcub} 0.43 {rcub} {dollar} / Inc。 825 .;还采用板冲击剥落技术研究ZrN和{rm} rm Sisb {lcub} 0.57 {rcub} Csb {lcub} 0.43 {rcub} {dollar}陶瓷涂层对镍和钛基合金的界面剥落强度。设备的时间限制仅允许测试几个样品。因此,获得的数据本质上是定性的。在大多数情况下,剥落发生在金属基材中,而不是预期的界面处。但是,在所有发生金属剥落的情况下,ZrN涂层均保持与金属的粘附性。对于{dollar} rm Sisb {lcub}

著录项

  • 作者

    Gruss, Kimberly Ann.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号