首页> 外文学位 >Influence of machining parameters on the subsurface damage of a high-strength silicon nitride, Si(3)N(4).
【24h】

Influence of machining parameters on the subsurface damage of a high-strength silicon nitride, Si(3)N(4).

机译:加工参数对高强度氮化硅Si(3)N(4)的次表面损伤的影响。

获取原文
获取原文并翻译 | 示例

摘要

Grinding forces produced during creep feed grinding can have significant effects on a material's strength and Weibull modulus. Machining parameters, such as down feed, grit size, table speed and wheel surface speed, define the magnitude of the grinding forces. The grinding parameters and the properties of the workpiece determine what type of grinding process occurs, either ductile or brittle grinding. The ductile grinding process leads to larger amounts of localized subsurface plastic deformation. The magnitude of this subsurface deformation is directly related to the machining parameters, namely the grit size, the depth of cut, and the table speed. Compressive residual stresses are formed due to the localized plastic deformation, which can be beneficial to the overall strength of the workpiece. In order to balance the compressive stresses, tensile stresses are also formed which can be detrimental to the strength. The depth of this damage varies and needs to be correlated with respect to the machining parameters and grinding forces. Test specimens have been developed to reveal this damage so that it can be quantified. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and x-ray diffraction are utilized to determine the depth and type of damage.; The results show that the grit size was the dominate factor in altering the strength of the material. The machining-induced damage was not distinguishable from the rest of the fracture surface, making the determination of flaw size difficult. From fracture mechanics equations the flaw size was calculated and compared to the depth of plastic deformation. The plastic deformation was isolated to the upper grain layer of the material due to the nonaccomodation of plastic flow to the lower grains and also due to the low thermal conductivity of the material. The calculated flaw sizes were determined to lie at deeper depths than the plastic deformation, thus, the strength of the material was not enhanced by the plastically deformed layer.
机译:蠕动进料研磨过程中产生的研磨力可能会对材料的强度和威布尔模量产生重大影响。加工参数(例如下进给,粒度,工作台速度和砂轮表面速度)定义了磨削力的大小。磨削参数和工件的特性决定了发生哪种类型的磨削过程,无论是韧性磨削还是脆性磨削。延性的研磨过程导致较大的局部地下塑性变形。这种表面下变形的大小与加工参数直接相关,即磨料尺寸,切削深度和工作台速度。由于局部塑性变形而形成压缩残余应力,这可能有利于工件的整体强度。为了平衡压缩应力,还形成了可能对强度有害的拉伸应力。这种损伤的深度是变化的,需要与加工参数和磨削力相关联。已经开发出试样来揭示这种损坏,以便可以对其进行量化。扫描电子显微镜(SEM),透射电子显微镜(TEM)和X射线衍射可确定损伤的深度和类型。结果表明,粒度改变是改变材料强度的主要因素。加工引起的损坏与其余的断裂表面无法区分,因此很难确定缺陷尺寸。从断裂力学方程式计算出缺陷尺寸,并将其与塑性变形深度进行比较。由于塑性材料不流动到下部晶粒,并且由于材料的低导热性,塑性变形被隔离到材料的上部晶粒层。确定的计算出的缺陷尺寸位于比塑性变形更深的深度,因此,材料的强度并未因塑性变形层而增强。

著录项

  • 作者

    Ott, Ronald Derek.;

  • 作者单位

    The University of Alabama at Birmingham.;

  • 授予单位 The University of Alabama at Birmingham.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 336 p.
  • 总页数 336
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号