首页> 外文学位 >Modelling the flexural behavior of reinforced-fiber-reinforced concrete members.
【24h】

Modelling the flexural behavior of reinforced-fiber-reinforced concrete members.

机译:对钢筋混凝土构件的弯曲行为进行建模。

获取原文
获取原文并翻译 | 示例

摘要

Incorporation of concrete tensile behavior is necessary to evaluate the flexural strength of Reinforced Fiber Reinforced Concrete (RFRC) structural members. Similarly, traditional analysis models do not include the ability to model the increased FRC ductility in compression. A key step in developing analytical tools for RFRC is the formulation of a more general and powerful analysis tool to evaluate the flexural behavior of such members and can be extended to the a beam-column member. A computer model named LAYER has provided this capability to evaluate the capacity of a general RFRC section using general compressive and tensile stress-strain distributions and has the capability to develop the interaction diagram for any given RFRC member.; Program LAYER was first used to extract the tensile stress-strain distributions from the detailed load versus deflection data available from some well-conducted modulus of rupture tests of FRC using a step-wise trial-and-error procedure.; In a parametric study for each combination of fiber type and volume content, including the no-fiber case, a series of beam shapes and sizes were studied using analyses by LAYER for each of several amounts of conventional reinforcement ranging from none through the balanced amount. From the moment curvature beams' behavior, for lightly reinforced beams, the tensile stress-strain properties of FRC are most important in the fibers effect on beam response, with the maximum moment resistance occurring soon after yielding of the conventional reinforcement and before significant pullout of fibers has occurred. For beams with the higher reinforcement ratios, the increased compressive ductility of FRC is dominant in the determining the strength and ductility increases achieved with FRC. The maximum moment resistance in such cases occurs at a maximum compressive strain higher than 0.003 used with conventional concrete. For the interactive diagram, the curves shape are largest near the balanced conditions and when the increased compression ductility of FRC is recognized through the use of a of a larger maximum concrete strain value.
机译:评估混凝土的抗拉强度对于评估增强纤维(RFRC)结构构件的抗弯强度是必要的。类似地,传统的分析模型不包括对压缩中增加的FRC延性建模的能力。开发用于RFRC的分析工具的关键步骤是制定更通用,功能更强大的分析工具,以评估此类构件的弯曲行为,并且可以扩展到梁柱构件。名为LAYER的计算机模型提供了使用一般压缩应力和拉伸应力-应变分布来评估一般RFRC截面的能力的功能,并且具有为任何给定的RFRC构件开发相互作用图的能力。程序LAYER首先用于从详细的载荷与挠度数据中提取拉伸应力-应变分布,这些数据可通过逐步试验和误差程序从某些进行良好的FRC断裂试验的良好模量得到。在对纤维类型和体积含量的每种组合(包括无纤维情况)进行的参数研究中,使用LAYER的分析方法,研究了从无到平衡的多种常规增强材料中的一系列束形和尺寸。从弯矩曲率梁的行为来看,对于轻度增强的梁,FRC的拉伸应力-应变特性在纤维对梁响应的影响中最为重要,最大的弯矩阻力出现在传统钢筋屈服后不久,即显着拉拔之前。纤维已经发生。对于具有更高配筋率的梁,FRC的压缩延展性提高是决定FRC强度和延性提高的主要因素。在这种情况下,最大抗弯矩发生在大于传统混凝土所使用的0.003的最大压缩应变时。对于交互式图表,曲线形状在平衡条件下最大,并且当通过使用较大的最大混凝土应变值识别到FRC的压缩延展性增强时,曲线形状最大。

著录项

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Engineering Civil.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 278 p.
  • 总页数 278
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号