首页> 外文学位 >文献详情
【6h】

A general model of electrochemical impedance spectroscopy and its application to hydrogen storage materials.

机译:电化学阻抗谱的一般模型及其在储氢材料中的应用。

获取原文
获取原文并翻译 | 示例
¥30

摘要

As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases.;The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a "spent fuel" in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project.;One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen and their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride.;After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, my task was then to be able to hydrogenate the organotin halides back to their hydride form.;In addition to this experimental work, a parallel project was carried out to develop a new model of electrochemical impedance spectroscopy (EIS). The EIS technique is capable of probing complex chemical and electrochemical reactions, and this model was written into a computer code that allowed the input of experimental EIS data and the extraction of kinetic parameters based on a best-fit analysis of theoretical reaction schemes.
机译:随着全球对能源需求的增加,科学家和工程师已经找到了通过使用氢为我们的世界供电的可能解决方案。尽管氢气可以燃烧为燃料,但它被认为是用于燃料电池的能量载体,其中的燃料被消耗(氧化)而不会产生温室气体。美国能源部(DOE)成立了化学卓越中心储氢,这项工作源自该项目。美国能源部已将氢化硼作为主要储氢材料。然后将各种氢化硼氧化以释放它们的氢,从而形成低级氢化硼或什至氧化硼形式的“废燃料”。该项目的最终目标是将氧化的氢化硼用作乏燃料,并将其氢化回原来的形式,以便再次用作燃料。因此,这项研究本质上是氢化硼回收项目。一类称为多面硼烷的氢化硼由于其含有足够量的氢的能力以及其物理和化学安全属性而引起了DOE的关注。不幸的是,这里进行的研究表明,多面体硼烷不会以允许释放足够氢的方式发生反应,也似乎不会从乏燃料形式加氢回原来的氢化物。经调查,项目目标保持不变,但储氢材料被DOE转换为氨硼烷。发现氨硼烷经历不可逆的氢释放过程,因此无法发生直接氢化。为了实现废氨硼烷燃料的氢化,可以通过使用称为有机锡氢化物的化合物进行间接氢化反应。在此过程中,有机锡氢化物将以其自身氧化为代价将废氨硼烷燃料加氢,形成有机锡卤化物。为了实现闭环循环,我的任务是能够将有机锡卤化物氢化回氢化物形式。;除此实验工作外,还开展了一项并行项目以开发电化学阻抗谱的新模型( EIS)。 EIS技术能够探测复杂的化学和电化学反应,并将该模型写入计算机代码,该代码允许输入对EIS的实验数据,并基于对理论反应方案的最佳拟合来提取动力学参数。

著录项

  • 作者

    Tokash, Justin Charles.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Applied Mathematics.;Chemistry, Physical.;Engineering, Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 ;
  • 原文服务方 国家工程技术数字图书馆
  • 关键词

    ;

相似文献

  • 外文文献
站内服务

联系方式:18141920177 (微信同号)

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号