首页> 外文学位 >The effect of mesoscopic spatial heterogeneity on the plastic deformation of Al-Cu alloys.
【24h】

The effect of mesoscopic spatial heterogeneity on the plastic deformation of Al-Cu alloys.

机译:介观空间异质性对Al-Cu合金塑性变形的影响。

获取原文
获取原文并翻译 | 示例

摘要

This work concerns the effect of manipulating the mesoscopic spatial arrangement of coarse, hard particles in a ductile metallic matrix on the overall macroscopic deformation behaviour of the bulk solid. The hypothesis that the spatial distribution of the harder phase influences the onset of yielding and strain hardening in a particle hardened ductile solid is examined by way of experiment on a well characterized metallic system containing two phases.; Rapidly solidified hypoeutectic binary Al-Cu granules, with nominal Cu compositions of 5%, 10%, 17% and 24% by weight were chosen as a model system. At room temperature, the binary system consists of two terminal equilibrium phases: the intermetallic compound CuAl2, and the ductile Al solid solution. At room temperature the intermetallic is approximately seven times harder than the matrix and intrinsically brittle. Materials possessing either a uniform spatial distribution or a bimodal spatial distribution of the CuAl 2 particles are generated through a combination of hot-pressing and high temperature forging.; Compression tests and complimentary experiments were performed on the materials in order to determine the magnitude and distribution of plasticity and damage in the materials as a function of the local heterogeneity and applied strain. The experimental flow curves were then compared to simulations obtained from two non-linear self-consistent continuum models of particle hardened, power law solids developed from the Eshelby "Equivalent Inclusion" Method. The flow curves obtained experimentally for the spatially uniform materials are in good agreement with a self-consistent method in which the matrix is assumed to uniformly coat the elastic particles to form a continuous network. In contrast, a model which assumes a random disordered morphology of both the particles and the matrix underestimates the plastic compliance of the uniform materials when the concentration of the particles is non-dilute.; At small strains, the hardening rate observed experimentally is enhanced by inhomogeneous spatial distribution of the second phase when the contrast between the properties of the hard and soft regions of the microstructure is strong and the volume occupied by the hard regions is high. A simple continuum deformation model which accounts for clustering is in good agreement with the flow curves of the clustered materials.
机译:这项工作涉及操纵延性金属基质中的粗,硬颗粒的介观空间排列对整体固体整体宏观变形行为的影响。通过在特征明确的包含两相的金属体系上进行实验,检验了硬相的空间分布影响颗粒硬化的可延展固体中屈服和应变硬化开始的假设。选择具有5%,10%,17%和24%重量的标称Cu组成的快速凝固的亚共晶二元Al-Cu颗粒作为模型系统。在室温下,二元体系由两个末端平衡相组成:金属间化合物CuAl2和易延展的Al固溶体。在室温下,金属间化合物的硬度约为基体的七倍,本质上是脆性的。通过热压和高温锻造的组合,产生具有均匀空间分布或双峰空间分布的CuAl 2颗粒的材料。对材料进行压缩测试和补充实验,以确定材料中可塑性和损伤的大小和分布,作为局部异质性和所施加应变的函数。然后,将实验流量曲线与从两个非线性的自洽连续粒子模型获得的模拟结果进行比较,这些模型是根据Eshelby“等效夹杂物”方法开发的,硬化的幂定律固体。实验获得的空间均匀材料的流动曲线与自洽方法非常吻合,在该方法中,假定基质均匀地覆盖了弹性颗粒以形成连续网络。相反,当颗粒的浓度不稀释时,假设颗粒和基质都具有随机无序形态的模型低估了均匀材料的塑性柔度。在小应变下,当微观结构的硬区域和软区域的性质之间的对比度强并且硬区域占据的体积高时,第二相的不均匀空间分布会提高实验观察到的硬化速率。一个简单的解释团簇的连续变形模型与团簇材料的流动曲线非常吻合。

著录项

  • 作者

    Conlon, Kelly Timothy.;

  • 作者单位

    McMaster University (Canada).;

  • 授予单位 McMaster University (Canada).;
  • 学科 Engineering Metallurgy.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 211 p.
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 冶金工业;工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:48:32

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号