首页> 外文学位 >Performance tradeoff of leakage reduction techniques in nanoscale CMOS circuits.
【24h】

Performance tradeoff of leakage reduction techniques in nanoscale CMOS circuits.

机译:纳米级CMOS电路中减少泄漏技术的性能折衷。

获取原文
获取原文并翻译 | 示例

摘要

In today's world, portable electronics thrives to achieve higher speed, lower power and lesser area. In the regime of improving performance and reducing the area, power was given least importance and had been ignored for quite some time. In current generation nanoscale CMOS technology, leakage power consumption has become a major concern and circuits are now designed considering leakage power as a major design factor. Nanoscale CMOS circuits incorporate high speed logic and high density memory circuits in a single chip making it hungry for power. To reduce the leakage power consumption in integrated circuits (ICs) several leakage reduction techniques have been proposed. Each technique has its own merits and demerits. This thesis examines the tradeoff of several leakage reduction techniques when applied to standard CMOS circuits such as adders, multipliers and memory.;Some of the important components of the current generation CMOS circuits are adders and memories. The 1-bit full adder is one of the most extensively used circuits and is a very important component in digital design applications such as ALU in microprocessors and micro controllers, DSP processors which is highly calculation intensive. One of the challenges in designing the current generation integrated circuits are the critical path of the ALUs which comprises of full adders, memory address generation circuits which uses full adders and the low latency memory itself. In the current generation of nanoscale ICs one of the challenges is to reduce the leakage power of the circuit. Low power, low area full adders are required for the portable devices and high speed full adders are required for computation intensive server processors, desktop processor and real time embedded systems. Hence a detailed analysis of all the full adder circuit topology is required to select the best full adder based on the applications and its trade off when leakage reduction techniques are used to build the circuit. This thesis investigates 32 different full adders starting from 10 transistor adder to the conventional 28 transistor full adder and effectively characterizes all the full adders based on its power and speed, with respect to different leakage reduction techniques for sub 100 nanometer technology nodes. This thesis also examines the effectiveness of several leakage reduction techniques for a case study of 8x8 Wallace multiplier. Several known leakage reduction techniques are applied to the Wallace multiplier and the performance tradeoff of the multiplier is analyzed.;To reduce the memory access latency, high density SRAMs are used as cache in current generation processors. Memories consume a large percentage of the area and power of the system. Memory circuits remain ON in retention mode (low power mode) for maximum amount of time to retain the data. All these factors make memory design one of the most important tasks in a system design. The speed and power consumed by the memories impact the system as a whole and hence reducing the power and increasing the speed of the memory circuit is of high importance. This thesis also examines the efficiency of using high-k metal gate MOSFETs for SRAM design applied with leakage reduction techniques.
机译:在当今世界,便携式电子产品蓬勃发展,以实现更高的速度,更低的功耗和更小的面积。在改善性能和减小面积的机制中,功率被赋予了最小的重要性,并且已经被忽略了很长时间了。在当前一代的纳米级CMOS技术中,泄漏功耗已成为主要问题,现在设计电路时将泄漏功率作为主要设计因素。纳米级CMOS电路在单个芯片中集成了高速逻辑和高密度存储电路,因此非常耗电。为了减少集成电路(IC)中的泄漏功率消耗,已经提出了几种减少泄漏的技术。每种技术都有其优点和缺点。本文探讨了几种减少泄漏的技术在加法器,乘法器和存储器等标准CMOS电路中的权衡。;当今CMOS电路的一些重要组成部分是加法器和存储器。 1位全加法器是使用最广泛的电路之一,并且在数字设计应用中非常重要,例如微处理器和微控制器中的ALU,计算量很大的DSP处理器。设计当前一代集成电路的挑战之一是ALU的关键路径,其中包括全加法器,使用全加法器的存储器地址生成电路和低延迟存储器本身。在当前的纳米级IC中,挑战之一是减小电路的泄漏功率。便携式设备需要低功耗,低面积的全加器,而计算密集型服务器处理器,台式机处理器和实时嵌入式系统则需要高速全加器。因此,需要对所有全加法器电路拓扑进行详细分析,以基于应用及其在使用减少泄漏的技术构建电路时的权衡选择最佳的全加法器。本文研究了从10晶体管加法器到常规的28晶体管全加法器的32种不同的全加法器,并针对亚100纳米技术节点的不同泄漏减少技术,基于其功率和速度有效地表征了所有全加法器。本文还针对8x8 Wallace乘法器的案例研究了几种减少泄漏的技术的有效性。几种已知的泄漏减少技术已应用于Wallace乘法器,并分析了该乘法器的性能折衷。为了减少内存访问延迟,高密度SRAM被用作当前一代处理器中的缓存。内存消耗了系统面积和功率的很大一部分。存储电路在保留模式(低功耗模式)下保持ON状态的时间最长,以保留数据。所有这些因素使内存设计成为系统设计中最重要的任务之一。存储器消耗的速度和功率对整个系统都有影响,因此降低功率和增加存储电路的速度非常重要。本文还研究了采用高k金属栅极MOSFET进行SRAM设计的效率,并采用了减少泄漏的技术。

著录项

  • 作者单位

    The University of Texas at San Antonio.;

  • 授予单位 The University of Texas at San Antonio.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2009
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:37:35

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号