首页> 外文学位 >Neural circuitry and neurotransmitters underlying vertebrate walking.
【24h】

Neural circuitry and neurotransmitters underlying vertebrate walking.

机译:脊椎动物行走的神经回路和神经递质。

获取原文
获取原文并翻译 | 示例

摘要

Locomotion can be generated in the vertebrate spinal cord by neuronal networks known as central pattern generators (CPGs). However, their action is constantly modified by extrinsic modulatory inputs and sensory feedback to compensate for an ever changing environment. To add questions of locomotor rhythm generation and its modulation in a walking vertebrate, we used an in vitro preparation isolated from a mature aquatic amphibian, the mudpuppy (Necturus maculatus). The preparation consisted of the first five segments of the spinal cord and the forelimb(s) attached by the brachial nerves. During chemically induced locomotion, electromyographic activity was recorded unilaterally or bilaterally from elbow flexor and extensor muscles. Combined use of pharmacological and immunostaining techniques revealed that some of the conventional neurotransmitters (i.e., serotonin, glycine, GABA) prominent in higher and lower vertebrates also affect locomotion in the mudpuppy. While not essential for rhythmogenesis, activation of serotonergic, glycinergic and GABAergic systems play a role in the control of locomotor frequency. In addition, glycine and GABA are important in mediating the reciprocal antagonism that coordinates the locomotor rhythm. The modulatory action of serotonin may be exerted by a well developed spinal serotonergic system.; A subsequent study, combining chemical and techniques with sectioning of the spinal cord revealed that the CPG for forelimb locomotion comprises at least two distinct centers responsible for producing rhythmic elbow flexion mid extension. The two centers can operate independently in the absence of reciprocal inhibitory interconnections between them. Sensory input was shown to interact with the flexion/extension networks to reset the ongoing walking rhythm in a phase-dependent manner. Intracellular recording revealed that the majority of interneurons within flexor and extensor centers were active during walking and were classified into four phasic types in the step cycle. Differential longitudinal distribution along the spinal cord of the four types of interneurons was in agreement with the existence of separate flexor and extensor centers.; Preliminary experiments conducted on a novel two-limb preparation showed that roughly one segment of the spinal cord contains neural circuitry capable of generating walking-like activity that involves both forelimbs. Midsagittal sectioning of this segment did not abolish activity in both disconnected sides indicating that each spinal contains neuronal elements capable of producing rhythmic bursting. However, the resulting bursts were mutually uncorrelated indicating importance of crossed spinal connections for coordination of the two limbs. The results contribute to the growing body of evidence for a common role of neuromodulatory substances in the control of locomotion among vertebrates. The distinctly localized rhythmogenic centers suggest that more complex neuronal networks probably contain small modular pattern generators which can be assembled to meet changing behavioral needs.
机译:运动可以通过称为中央模式发生器(CPG)的神经元网络在脊椎动物的脊髓中产生。但是,它们的作用会被外部调制输入和感官反馈不断修改,以补偿不断变化的环境。为了增加在行走的脊椎动物中运动节律的产生及其调节的问题,我们使用了从成熟的水生两栖动物mudpuppy( Necturus maculatus )分离的体外制剂。制剂由脊髓的前五个部分和臂神经所附着的前肢组成。在化学诱导的运动过程中,从肘屈肌和伸肌单侧或双侧记录肌电活动。结合使用药理学和免疫染色技术表明,在高等和低等脊椎动物中突出的某些常规神经递质(即5-羟色胺,甘氨酸,GABA)也影响泥泞的运动。尽管对于节律性不是必需的,但血清素能,甘氨酸能和GABA能系统的激活在运动频率的控制中起作用。此外,甘氨酸和GABA在介导协调运动节律的相互拮抗作用中也很重要。 5-羟色胺的调节作用可能是由发达的脊髓5-羟色胺能系统发挥的。随后的研究,将化学和技术与脊髓切片相结合,发现用于前肢运动的CPG包括至少两个不同的中心,这些中心负责产生节律性的肘部中伸。两个中心在彼此之间没有相互抑制性相互联系的情况下可以独立运作。感觉输入显示与屈伸网络互动,以阶段依赖的方式重置正在进行的步行节奏。细胞内记录显示,屈肌和伸肌中心内的大多数神经元在行走过程中活跃,并在步伐周期中分为四种阶段类型。四种类型的神经元沿脊髓的纵向差异分布与单独的屈肌和伸肌中心的存在相符。在一种新颖的两肢制备方法上进行的初步实验表明,脊髓的大约一个部分包含神经回路,该回路能够产生涉及两个前肢的步行样活动。该段的中矢状切面在两个断开的侧面均未消除活性,表明每个脊柱均包含能够产生节律性爆发的神经元。然而,产生的爆发是相互不相关的,表明交叉的脊柱连接对于协调两个肢体非常重要。结果为越来越多的证据表明,神经调节物质在控制脊椎动物运动中具有共同作用。独特的节律发生中心表明,更复杂的神经元网络可能包含小型模块化模式发生器,可以将其组装以满足不断变化的行为需求。

著录项

  • 作者

    Jovanovic, Ksenija.;

  • 作者单位

    University of Alberta (Canada).;

  • 授予单位 University of Alberta (Canada).;
  • 学科 Biology Neuroscience.; Biology Animal Physiology.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 240 p.
  • 总页数 240
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 神经科学;生理学;
  • 关键词

  • 入库时间 2022-08-17 11:48:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号