首页> 外文学位 >Topology, motion, and periodic lattices in DNA nanotechnology.
【24h】

Topology, motion, and periodic lattices in DNA nanotechnology.

机译:DNA纳米技术中的拓扑,运动和周期性晶格。

获取原文
获取原文并翻译 | 示例

摘要

Working at the nanometer scale is very attractive: not only because of its promise in future technology, also because of our curiosity. DNA, the molecule that the Nature has chosen for storing genetic information, is particularly suited for this purpose. Branched motifs of DNA constitute a system for the tractable assembly of objects, links and arrays on the nanometer scale. This strategy has been extended in three aspects in this dissertation. First is the synthesis of Borromean rings, in which, although linked together, removal of any individual circle unlinks the remaining rings. Molecules with the Borromean property present a formidable synthetic task, because their assembly entails placing nodes with equal numbers of positive and negative signs specifically about a link. The half-turn of double helical DNA provides nodes for topological construction, whose signs can be imposed by choosing B-DNA (negative) or Z-DNA (positive). Besides static species, it is desirable to assemble nanomechanical devices from the same material. This is the second part of the work. The simplest device is a rigid object that responds to an external stimulus by changing structure in a predictable fashion. A molecular device was constructed that consists of two rigid DNA double crossover (DX) molecules connected by 4.5 double helical turns. Twenty nucleotide pairs of this helix can be converted to Z-DNA. In conditions that promote B-DNA, the two unconnected domains of the DX molecules lie on the same side of the central helix; however, in Z-promoting conditions, the unconnected domains lie on opposite sides of the central helix. This relative repositioning is detected by fluorescence resonance energy transfer (FRET), because the separation of two dyes attached to the device changes as a consequence of the transition. In the last part, a two-dimensional DNA crystal has been designed and constructed from Holliday junction analogs that are not inherently rigid. Wishing less flexibility, four junctions have been fused into a rhombus-like molecule. The rhombuses can be directed to self-assemble by hydrogen bonding into a 1- or 2-dimensional periodic array. The expected spacing is seen when the array is observed by atomic force microscopy (AFM).
机译:纳米级的工作非常有吸引力:不仅因为它对未来技术的承诺,还因为我们的好奇心。 DNA是大自然选择用来存储遗传信息的分子,特别适合此目的。 DNA的分支基序构成了一个系统,可在纳米尺度上方便地组装物体,链接和阵列。本文从三个方面对这一策略进行了扩展。首先是Borromean环的合成,其中尽管连接在一起,但除去任何单个的环都会使其余的环不相连。具有Borromean属性的分子提出了艰巨的合成任务,因为它们的组装需要将带有相等数量的正负号的节点放在特定的链接上。双螺旋DNA的半圈为拓扑结构提供了节点,可以通过选择B-DNA(负)或Z-DNA(正)来施加其征兆。除静态物质外,还希望用相同的材​​料组装纳米机械装置。这是工作的第二部分。最简单的设备是刚性物体,它通过以可预测的方式改变结构来响应外部刺激。构建了一个分子装置,该装置由两个刚性DNA双交叉(DX)分子组成,它们通过4.5个双螺旋匝连接。该螺旋的二十个核苷酸对可以转化为Z-DNA。在促进B-DNA的条件下,DX分子的两个未连接结构域位于中央螺旋的同一侧。但是,在Z促进条件下,未连接的区域位于中央螺旋的相对两侧。通过荧光共振能量转移(FRET)可以检测到这种相对重新定位,因为附着在该设备上的两种染料的分离会因过渡而改变。在最后一部分中,二维的DNA晶体是由Holliday连接类似物设计并构建的,该类似物本身并不是刚性的。希望减少灵活性,四个连接点已融合到菱形分子中。菱形可以通过氢键结合成一维或二维周期阵列而自组装。通过原子力显微镜(AFM)观察阵列时,可以看到预期的间距。

著录项

  • 作者

    Mao, Chengde.;

  • 作者单位

    New York University.;

  • 授予单位 New York University.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号