首页> 外文学位 >Modification of spontaneous emission in photonic crystals.
【24h】

Modification of spontaneous emission in photonic crystals.

机译:光子晶体中自发发射的修改。

获取原文
获取原文并翻译 | 示例

摘要

The modification of spontaneous emission in a semiconductor photonic crystal and in a semiconductor microcavity at room temperature is the subject of this thesis. The broad spectral linewidth of semiconductors together with large surface recombination velocities make the observation of these effects an interesting and challenging task.; A quantum electrodynamical model is used to estimate enhancement of spontaneous radiation rates in photonic crystals and microcavities. Extensive numerical computations were employed to calculate the band structure of thin slab photonic crystals and the properties of microcavities. The minimal achievable effective mode volume, a crucial parameter for cavity enhancement of spontaneous emission was shown to be ≈2(λ/2n)3 where λ is the resonant wavelength and n is the refractive index. Five-fold enhancement of spontaneous emission was shown to be physically possible in InGaAs nanocavities.; Photoluminescence measurements of surface recombination velocity were used in the search of material system most suitable for fabrication of such a photonic crystal. The InGaAs and InGaN material systems were shown to be good candidates for luminescent photonic bandgap structures.; Angular resolved photoluminescence measurements were used to experimentally measure the band structure of so-called electromagnetic conduction bands of such a photonic crystal.; The enhancement of spontaneous emission extraction from a thin slab photonic crystal was demonstrated. It was shown that emission into the leaky bands of the photonic crystal has the same benefit as cavity-enhanced spontaneous emission, provided these bands are flat enough relatively to the spectral emission bandwidth of the material. Recommendations for novel LED designs were worked out based on the results of this study.
机译:本文研究的主题是室温下半导体光子晶体和半导体微腔中自发发射的改变。半导体的宽光谱线宽以及较大的表面复合速度使得观察这些效应成为一项有趣而具有挑战性的任务。量子电动力学模型用于估计光子晶体和微腔中自发辐射速率的增强。大量的数值计算被用来计算薄平板光子晶体的能带结构和微腔的性质。可实现的最小有效模式体积是自发发射腔增强的关键参数,被证明为≈ 2(λ/ 2n) 3 ,其中λ是共振波长,n是折射率。在InGaAs纳米腔中,自发发射的五倍增强在物理上是可能的。表面复合速度的光致发光测量用于寻找最适合于制造这种光子晶体的材料系统。已证明InGaAs和InGaN材料系统是发光光子带隙结构的理想候选材料。角分辨光致发光测量被用于实验地测量这种光子晶体的所谓电磁导带的能带结构。证明了从薄平板光子晶体的自发发射提取的增强。结果表明,光子晶体泄漏带中的发射与腔增强自发发射具有相同的好处,只要这些带相对于材料的光谱发射带宽足够平坦。根据这项研究的结果,提出了新颖的LED设计建议。

著录项

  • 作者

    Boroditsky, Mikhail.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Physics Condensed Matter.; Physics Optics.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;
  • 关键词

  • 入库时间 2022-08-17 11:47:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号