首页> 外文学位 >Novel Sensing Appraoches Towards Ultimate MEMS Sensors
【24h】

Novel Sensing Appraoches Towards Ultimate MEMS Sensors

机译:面向最终MEMS传感器的新型传感方法

获取原文
获取原文并翻译 | 示例

摘要

Within the past few decades, several micro and nano-electromechanical (MEMS and NEMS) accelerometers, magnetometers and vibration sensors utilizing various actuation and sensing mechanisms have been developed and demonstrated. These sensors are integral to various geographical, industrial, military, environmental and biomedical applications. Although these sensors based on MEMS technology have been successfully commercialized and are widely used, this dissertation focuses on novel approaches to enhance the performance of such sensors drastically.;In most cases for the MEMS accelerometer, the large power consumption of MEMS sensors is attributed to the analog front end needed for reading, processing, and analog to digital conversion of the sensor output, which is typically responsible for most to all the power consumption of the whole sensor. The proposed effort in this dissertation aims at development of a new class of digitally readable MEMS accelerometers allowing significant power reduction by eliminating the need for the analog front-end.;Conventional magnetometers that offer high sensitivities for fields smaller than a few nT's are not MEMS compatible and cannot undergo miniaturization. MEMS Magnetometers have an edge over conventional counterparts due to their unique features such as small size, low cost, lower power consumption and simplicity of operation. Such properties offer unrivalled advantages, especially when it comes to medical applications, such as magneto-encephalography, where compact arrays of ultra-sensitive sensors are desirable. This dissertation demonstrates ultra-high sensitivities (noise floor in pT/√Hz) for a Lorentz force resonant MEMS magnetometer enabled by internal-thermal piezoresistive vibration amplification. A detailed model of the magneto-thermo-electro-mechanical internal amplification is also developed and studied. Frequency modulation of a Lorentz force MEMS magnetometer for enhanced sensitivity using a leverage mechanism has also been explored.;Currently, no low cost, low power, and compact vibration sensor solution exists that can provide frequency distribution data for the measured vibrations This dissertation implements and characterizes building blocks of a low-power miniaturized vibration spectrum analyzer with a resolution of 1mg over a wide frequency range (0-10kHz) using an existing Texas Instruments CMOS process, without adding any complex post processing fabrication steps.
机译:在过去的几十年中,已经开发并展示了利用各种驱动和传感机制的数种微纳机械加速度计(MEMS和NEMS),磁力计和振动传感器。这些传感器是各种地理,工业,军事,环境和生物医学应用必不可少的。尽管这些基于MEMS技术的传感器已经成功地商业化并得到了广泛的应用,但本论文着重于大幅度提高此类传感器性能的新颖方法。;在大多数情况下,对于MEMS加速度计,MEMS传感器的大功耗归因于读取,处理以及传感器输出的模数转换所需的模拟前端,通常负责整个传感器的大部分功耗。本文的拟议工作旨在开发一种新型的数字可读MEMS加速度计,通过消除对模拟前端的需求,从而显着降低了功耗。传统的磁力计对小于几nT的磁场提供高灵敏度的非MEMS兼容并且不能进行小型化。 MEMS磁力计由于其独特的功能(例如体积小,成本低,功耗低和操作简单)而比传统磁力计具有优势。这样的特性提供了无与伦比的优势,尤其是在医疗应用中,例如需要超紧凑型传感器的紧凑型阵列的磁脑电图。本文证明了通过内部热压阻振动放大实现的Lorentz力共振MEMS磁力计的超高灵敏度(pT /√Hz中的本底噪声)。还开发并研究了磁热电机械内部放大的详细模型。还研究了利用杠杆机制提高灵敏度的洛伦兹力MEMS磁力计的频率调制。;目前,不存在可以为所测振动提供频率分布数据的低成本,低功耗和紧凑型振动传感器解决方案。使用现有的德州仪器(TI)CMOS工艺来表征低功率小型振动光谱分析仪的构建基块,该分析仪在宽频率范围(0-10kHz)内的分辨率为1mg,而无需增加任何复杂的后处理制造步骤。

著录项

  • 作者

    Kumar, Varun Subramaniam.;

  • 作者单位

    The University of Texas at Dallas.;

  • 授予单位 The University of Texas at Dallas.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 康复医学;
  • 关键词

  • 入库时间 2022-08-17 11:37:36

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号