首页> 外文学位 >Multi-scale dynamics and subgrid-scale modeling of turbulence in two and three dimensions.
【24h】

Multi-scale dynamics and subgrid-scale modeling of turbulence in two and three dimensions.

机译:二维和三维湍流的多尺度动力学和亚网格尺度建模。

获取原文
获取原文并翻译 | 示例

摘要

In a sharp contrast to three-dimensional (3D) fluid turbulence which gives rise a joint cascade of kinetic energy and helicity all way down to the smaller and smaller scales, in two-dimensional (2D) turbulence, however, there exist a direct cascade of enstrophy (half the mean-square vorticity) and an inverse cascade of kinetic energy . The mechanisms of 2D cascades have been the matter of debate since the leading paper of Kraichnan (1967), and remain unclear. In this thesis, a novel filtering approach [42] is employed to study the dual cascade picture in 2D hydrodynamic turbulence in a statistically steady situation by direct numerical simulation (DNS) of the 2D Navier-Stokes equations.;For 2D enstrophy cascade, we observed an energy spectrum steeper than k-3 law predicted by Kraichnan (1967), but in a perfect agreement with his log-correction [57]. It was found that the 2D enstrophy cascade is strongly ultraviolet (UV) local. Physically, the 2D enstrophy cascade originates from steepening of inertial-range vorticity gradients due to compression of vorticity level-sets by the large-scale strain field.;For 2D inverse energy cascade, a similarity wavenumber range was observed in which the mean spectral energy flux is a negative constant and the energy spectrum scales as k-5/3, consistent with the prediction of Kraichnan (1967). We found that the inverse energy cascade is scale-local, but that the strongly local contribution vanishes identically, as argued by Kraichnan (1971). In particular, we examined a Multi-Scale Gradient (MSG) expansion developed by Eyink (2006a) for the turbulent stress, which up to second-order in space gradients predicts very well the magnitude, spatial structure and scale distribution of the local energy flux. Our findings give strong support to vortex-thinning [59, 101, 106] as the fundamental mechanism of 2D inverse energy cascade.;Another topic in this thesis is the subgrid-scale (SGS) stress modeling for large eddy simulation (LES) of turbulent flows. We propose to impose physical constraints in the dynamic procedure and to calculate the SGS model coefficients using a constrained variation. An SGS dissipation constraint is deduced based on the scale-invariance of fluid turbulence in the inertial range. Numerical simulations of forced and decaying isotropic turbulence demonstrate that the constrained dynamic mixed model predicts the energy evolution and the SGS dissipation more accurately than the non-constrained model does. The constrained SGS model also shows a strong correlation with the "actual" stress from a priori test and is capable of predicting the energy backscatter, manifesting a desirable feature of combining the advantages of dynamics Smagorinsky and mixed models.
机译:与三维(3D)流体湍流形成鲜明对比的是,在二维(2D)湍流中,动能和螺旋度一直下降到越来越小的尺度。涡旋(均方涡度的一半)和动能的反级联。自Kraichnan(1967)发表领先论文以来,二维级联机制一直是争论的问题,目前尚不清楚。本文采用一种新颖的滤波方法[42],通过对二维Navier-Stokes方程的直接数值模拟(DNS),在统计稳定的情况下研究二维流体动力湍流中的双级联图片。他观察到的能量谱比Kraichnan(1967)预测的k-3定律陡,但与他的对数校正完全吻合[57]。已发现2D涡旋级联是强紫外线(UV)局部的。从物理上讲,二维大涡级联反应是由于大应变场压缩了涡度水平集而导致惯性范围涡度梯度变陡;对于二维逆能量级联,观察到相似波数范围,其中平均光谱能量通量是一个负常数,能谱定为k-5 / 3,与Kraichnan(1967)的预测一致。我们发现,逆能量级联是规模局部的,但正如Kraichnan(1971)所言,强烈的局部贡献消失了。特别是,我们检查了Eyink(2006a)针对湍流应力而开发的多尺度梯度(MSG)扩展,该梯度在空间梯度中高达二阶可以很好地预测局部能量通量的大小,空间结构和尺度分布。我们的发现为涡旋稀化[2] [59,101,106]作为二维逆能量级联的基本机制提供了有力的支持。;本论文的另一个主题是大涡模拟(LES)的亚网格尺度(SGS)应力建模。湍流。我们建议在动态过程中施加物理约束,并使用约束变量来计算SGS模型系数。根据惯性范围内流体湍流的尺度不变性推导SGS耗散约束。强迫和衰减各向同性湍流的数值模拟表明,受约束的动态混合模型比无约束的模型更准确地预测了能量的演化和SGS的耗散。约束的SGS模型还显示与先验测试的“实际”应力有很强的相关性,并且能够预测能量的反向散射,体现了将动力学Smagorinsky和混合模型的优点相结合的理想功能。

著录项

  • 作者

    Xiao, Zuoli.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Applied Mechanics.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:37:41

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号