首页> 外文学位 >Simulation of regional ecosystem dynamics of carbon and nitrogen in croplands in a changing global climate: Application to Ohio croplands.
【24h】

Simulation of regional ecosystem dynamics of carbon and nitrogen in croplands in a changing global climate: Application to Ohio croplands.

机译:在不断变化的全球气候中模拟农田中碳和氮的区域生态系统动态:在俄亥俄州农田中的应用。

获取原文
获取原文并翻译 | 示例

摘要

The biogeochemical cycles of carbon (C) and nitrogen (N) connect all the abiotic and biotic components of ecosystems to one another, and thus, are closely coupled with variations in productivity and nutrient cycling. The local and regional disturbances such as heavy reliance on fossil fuels, deforestation, and degradative management practices, have important implications for long-term ecosystem productivity regionally as well as climate change globally. C and N budgets are, therefore, significant ecosystem-level indicators that assist in evaluating long-term productivity of ecosystems, and in designing sustainable management practices and policies in a changing global climate. Assessment of impacts of economic, energy and population growth on CO 2 emissions by a multiple linear regression model, revealed the importance of such socio-economic driving forces as population and consumption growth, and energy intensity, in stabilizing GHG emissions. Two generic simulation models for croplands were devised to quantify long-term temporal changes in regional C sources and sinks in response to global climate change and management practices.; A comparison of observed and simulated SOC values gave an R2 of 0.85 for the Waite Permanent Rotation Trial (Australia) and of 0.80 for the 470 northwest Ohio sites. The simulations for Ohio continuous corn, soybean, wheat and oats croplands revealed that quantity (growth of C4 vs. C3 species) and quality (C:N ratio and lignin content) of crop residue inputs to the soil are the major mechanisms that control steady state SOC storage. The magnitude and rate of mitigating atmospheric C-N emissions by croplands depends on the difference between the initial and steady state SOC contents. The interactive effect of CO2-fertilization and increased soil temperature had a positive influence on long-term SOC-N storage since corn growth, a C4 species, stimulated by the increased temperature and increased C:N ratio of residues caused by CO2-fertilization offset mineralization rates of SOC-N accelerated by the increased temperature. However, accelerated mineralization of SOC-N by the increased temperature led to a slight decrease in steady state SOC pool in continuous soybean, wheat and oats (C3 species) croplands. Sensitivity analysis of the models showed that steady state SOC-N storage increased with decreasing temperatures, increasing clay content, low harvest index, and conservation management practices (through higher residue inputs and suppressed decomposition and mineralization rates of SOC-N pools).
机译:碳(C)和氮(N)的生物地球化学循环将生态系统的所有非生物和生物成分彼此连接,因此与生产力和养分循环的变化紧密相关。严重依赖化石燃料,毁林和退化性管理做法等局部和区域性动荡,对区域性长期生态系统生产力以及全球气候变化具有重要影响。因此,碳和氮预算是重要的生态系统级指标,可帮助评估生态系统的长期生产力,并在不断变化的全球气候中设计可持续的管理实践和政策。通过多元线性回归模型评估经济,能源和人口增长对CO 2 排放的影响,揭示了诸如人口和消费增长以及能源强度之类的社会经济驱动力在稳定经济中的重要性温室气体排放量。设计了两个通用的农田模拟模型,以量化区域碳源和汇的长期时间变化,以响应全球气候变化和管理实践。对观察到的和模拟的SOC值进行比较后,Waite永久自转试验(澳大利亚)的R 2 为0.85,俄亥俄州西北部470个站点的R 2 为0.80。对俄亥俄州连续玉米,大豆,小麦和燕麦农田的模拟显示,数量(C 4 与C 3 物种的生长)和质量(C:N比和木质素)作物残渣输入土壤)是控制稳态SOC储存的主要机制。农田减少大气C-N排放的幅度和速率取决于初始和稳态SOC含量之间的差异。 CO 2 施肥与土壤温度升高的交互作用对长期SOC-N存储有积极影响,因为玉米生长是一种受C 4 刺激的玉米。 CO 2 施肥引起的温度升高和残渣C:N比值​​的增加抵消了温度升高导致SOC-N矿化速率的提高。然而,温度升高加速了SOC-N的矿化作用,导致大豆,小麦和燕麦(C 3 种)连续农田的稳态SOC池略有减少。对模型的敏感性分析表明,稳态SOC-N存储量随温度降低,粘土含量增加,收割指数低和养护管理实践而增加(通过增加残渣输入量和抑制SOC-N池的分解和矿化率)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号