首页> 外文学位 >Power scaling of ytterbium(3+)-doped phosphate fiber lasers and amplifiers.
【24h】

Power scaling of ytterbium(3+)-doped phosphate fiber lasers and amplifiers.

机译:掺((3+)的磷酸盐光纤激光器和放大器的功率缩放。

获取原文
获取原文并翻译 | 示例

摘要

The initial motivation for this work was to build a high-power single-frequency, single-mode, linearly polarized fiber MOPA for gravitational-wave detection. Although spectacular progress has been made over the past few years in the development of single-frequency Yb3+-doped silica fiber laser sources, their maximum output powers are still limited by the onset of stimulated Brillouin scattering. To further scale the output power of single-frequency silica fiber laser sources with step-index single-mode fibers, increasing the ion concentration in the gain fiber is required. Unfortunately, excessive amounts of rare-earth ions in silica fibers cause concentration quenching, photodarkening, and crystallization. To this end, phosphate glass is a good alternative because of the high solubility of rare-earth oxides in this host. For example, the solubility of Yb2O3 in phosphate glass is at least 26 wt.%, i.e., 10 times higher than in silica. Such a high ion concentration significantly reduces the required fiber length and enables the use of a short step-index single-mode fiber without suffering from SBS up to very high output powers.;To investigate the feasibility of extracting high powers from this gain medium, we measured several key material properties of the Yb3+-doped phosphate fibers, including the SBS gain coefficient, photodarkening resistance, and fiber background loss. Our experimental results showed that, compared to silica fibers, phosphate fibers exhibit a 50% weaker SBS gain coefficient and allow a 6-times-higher Yb3+ concentration without the onset of photodarkening. We measured the scattering and absorption loss of the phosphate fiber by using an integrating sphere and a fiber calorimeter, respectively. The results showed that 77% of the fiber background loss originates from impurity absorption, and the rest from scattering. It indicates that absorption loss must be reduced to improve the efficiency of the fiber laser.;The studies of these material properties allow us to precisely evaluate the potential for power scaling of phosphate fiber lasers and amplifiers. As a proof of principle, we experimentally demonstrate truly single-mode fiber lasers and amplifiers with record output powers of several tens of watts. These laser sources include a 57-W multiple-frequency 1.06-mum fiber laser with a slope efficiency of 52.7%, and a 16-W single-frequency fiber MOPA. This is the first report of a watt-level CW Yb3+-doped phosphate fiber amplifier. We showed through numerical simulations that the exceptional characteristics of phosphate fibers can be extended to a ∼700-W single-frequency fiber amplifier from a step-index single-mode fiber. The peak thermal load of this 700-W phosphate fiber MOPA was calculated to be ∼800 W/m, which can be handled by suitable cooling. In summary, all results presented in this dissertation confirm that Yb3+-doped phosphate fibers constitute a promising gain element for power-scaling truly single-mode single-frequency fiber laser amplifiers.
机译:这项工作的最初动机是构建用于引力波检测的大功率单频,单模,线性偏振光纤MOPA。尽管在过去几年中,单频掺Yb3 +掺杂的石英纤维激光源的开发取得了惊人的进展,但其最大输出功率仍然受到受激布里渊散射的限制。为了进一步调整具有阶跃折射率单模光纤的单频石英光纤激光源的输出功率,需要增加增益光纤中的离子浓度。不幸的是,二氧化硅纤维中过量的稀土离子会导致浓度猝灭,光暗化和结晶。为此,磷酸盐玻璃是一种很好的选择,因为稀土氧化物在该主体中具有高溶解度。例如,Yb 2 O 3在磷酸盐玻璃中的溶解度至少为26重量%,即比二氧化硅高10倍。如此高的离子浓度可显着减少所需的光纤长度,并能够使用短阶跃折射率单模光纤,而不会遭受高达非常高输出功率的SBS的影响;为了研究从这种增益介质中提取高功率的可行性,我们测量了掺Yb3 +的磷酸盐纤维的几种关键材料性能,包括SBS增益系数,抗光暗化性和纤维本底损耗。我们的实验结果表明,与石英纤维相比,磷酸盐纤维的SBS增益系数降低了50%,Yb3 +浓度提高了6倍,而不会出现光暗化现象。我们分别使用积分球和纤维量热仪测量了磷酸盐纤维的散射和吸收损耗。结果表明,纤维本底损耗的77%来自杂质吸收,其余来自散射。这表明必须降低吸收损耗以提高光纤激光器的效率。对这些材料特性的研究使我们能够精确地评估磷酸盐光纤激光器和放大器功率缩放的潜力。作为原理的证明,我们通过实验证明了真正的单模光纤激光器和放大器,其记录的输出功率为数十瓦。这些激光源包括斜率效率为52.7%的57W多频1.06微米光纤激光器和16W单频光纤MOPA。这是功率级掺有CW Yb3 +的磷酸盐光纤放大器的首次报道。我们通过数值模拟表明,磷酸盐纤维的非凡特性可以从阶跃折射率单模光纤扩展到约700W单频光纤放大器。计算得出该700 W磷酸盐纤维MOPA的峰值热负荷约为800 W / m,可以通过适当的冷却来处理。总而言之,本文提出的所有结果都证实,掺Yb3 +的磷酸盐光纤构成了真正实现单模单频光纤激光放大器功率缩放的有前途的增益元件。

著录项

  • 作者

    Lee, Yin-Wen.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Physics Optics.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:37:39

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号