首页> 外文学位 >Growth and high rate reactive ion etching of epitaxially grown barium hexaferrite films on single crystal silicon carbide substrates.
【24h】

Growth and high rate reactive ion etching of epitaxially grown barium hexaferrite films on single crystal silicon carbide substrates.

机译:在单晶碳化硅衬底上外延生长的六价铁酸钡薄膜的生长和高速率反应离子刻蚀。

获取原文
获取原文并翻译 | 示例

摘要

Ferrites are an invaluable group of insulating magnetic materials used for high frequency microwave applications in such passive electronic devices as isolators, phase shifters, and circulators. Because of their high permeability, non-reciprocal electromagnetic properties, and low eddy current losses, there are no other materials that serve such a broad range of applications. Until recently, they have been widely employed in bulk form, with little success in thin film-based applications in commercial or military microwave technologies. In today's technology, emerging electronic systems, such as high frequency, high power wireless and satellite communications (GPS, Bluetooth, WLAN, commercial radar, etc) thin film materials are in high demand. It is widely recognized that as high frequency devices shift to microwave frequencies the integration of passive devices with semiconductor electronics holds significant advantages in the realization of miniaturization, broader bandwidths, higher performance, speed, power and lower production costs. Thus, the primary objective of this thesis is to explore the integration of ferrite films with wide band gap semiconductor substrates for the realization of monolithic integrated circuits (MICs).;This thesis focuses on two key steps for the integration of barium hexaferrite (Ba M-type or BaM) devices on semiconductor substrates. First, the development of high crystal quality ferrite film growth via pulsed laser deposition on wide band gap silicon carbide semiconductor substrates, and second, the effective patterning of BaM films using dry etching techniques.;To address part one, BaM films were deposited on 6H silicon carbide (0001) substrates by Pulsed Laser Deposition. X-ray diffraction showed strong crystallographic alignment while pole figures exhibited reflections consistent with epitaxial growth. After optimized annealing, BaM films have a perpendicular magnetic anisotropy field of 16,900 Oe, magnetization (4piMs) of 4.4 kG, and ferromagnetic resonance peak-to-peak derivative linewidth at 53 GHz of 96 Oe. This combination of properties qualifies these films for microwave device applications. This marks the first growth of a microwave ferrite on SiC substrates and offers a new approach in the design and development of mu-wave and mm-wave monolithic integrated circuits. In part two, high-rate reactive ion etching using CHF3/SF6 gas mixtures was successfully demonstrated on BaM films, resulting in high aspect profile features of less than 50 nm in lateral dimension.;These demonstrations enable the future integration of ferrites into MIC devices and technologies.
机译:铁氧体是在绝缘子,移相器和循环器等无源电子设备中用于高频微波应用的宝贵的绝缘磁性材料组。由于它们的高导磁率,不可逆的电磁特性和低涡流损耗,因此没有其他材料可以满足如此广泛的应用。直到最近,它们已经以散装形式广泛使用,在商业或军用微波技术中基于薄膜的应用中几乎没有成功。在当今的技术中,对诸如高频,大功率无线和卫星通信(GPS,蓝牙,WLAN,商业雷达等)的薄膜材料的新兴电子系统有很高的需求。众所周知,随着高频设备向微波频率转移,无源设备与半导体电子设备的集成在实现小型化,更宽的带宽,更高的性能,速度,功率和更低的生产成本方面具有显着优势。因此,本论文的主要目的是探索铁氧体膜与宽带隙半导体衬底的集成,以实现单片集成电路(MIC).;本论文着重介绍了六铁酸钡(Ba M型或BaM)器件。首先,通过在宽带隙碳化硅半导体衬底上进行脉冲激光沉积来发展高品质的铁素体薄膜生长;其次,使用干法刻蚀技术对BaM薄膜进行有效的图案化;;第1部分,在6H上沉积BaM薄膜脉冲激光沉积制备碳化硅(0001)衬底。 X射线衍射显示出强的晶体学排列,而极图显示出与外延生长一致的反射。经过优化的退火处理后,BaM膜的垂直磁各向异性场为16,900 Oe,磁化强度(4piMs)为4.4 kG,在53 GHz的铁磁共振峰峰导数线宽为96 Oe。这些特性的组合使这些薄膜有资格用于微波设备。这标志着微波铁氧体在SiC衬底上的首次增长,并为mu波和mm波单片集成电路的设计和开发提供了一种新方法。在第二部分中,成功地在BaM薄膜上演示了使用CHF3 / SF6气体混合物进行的高速率反应离子刻蚀,从而产生了横向尺寸小于50 nm的高轮廓特征;这些演示使铁氧体将来可以集成到MIC器件中。和技术。

著录项

  • 作者

    Chen, Zhaohui.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:37:39

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号